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Abstract 
The scaled boundary finite element method (SBFEM) is a semi-analytical method, 
whose versatility, accuracy and efficiency are not only equal to, but potentially better 
than the finite element method and the boundary element method for certain 
problems. This paper investigates the possibility of using Fourier shape functions in 
the SBFEM to form the approximation in the circumferential direction. The shape 
functions effectively form a Fourier series expansion in the circumferential direction, 
and are augmented by additional linear shape functions. The proposed method is 
evaluated by solving elastostatic problems. The accuracy and convergence of the 
proposed method is demonstrated, and the performance is found to be better than 
using polynomial elements or using an element-free Galerkin approximation for the 
circumferential approximation.  
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Introduction 
The scaled boundary method (SBM) is a semi-analytical method developed 

relatively recently by Wolf and Song (Wolf and Song, 1996). The method introduces 
a normalised radial coordinate system based on a scaling centre and a defining curve 
(usually taken as the boundary). The governing differential equations are weakened in 
the circumferential direction and then solved analytically in the normalised radial 
direction. The SBM combines the advantages of the Finite Element Method (FEM) 
and the Boundary Element Method (BEM), and, unlike the BEM, no fundamental 
solution is required. In addition, the SBM has been shown to be more efficient than 
the FEM for problems involving unbounded domains and for problems involving 
stress singularities or discontinuities (Deeks and Wolf, 2002).  Effective applications 
of this method have been demonstrated in various problem domains, including 
fracture problems and foundation problems.  

In the scaled boundary method, the discretisation approach used in the 
circumferential direction has significant influence on the accuracy of the resulting 
solutions (Deeks and Augarde, 2005). The most commonly used method for 
performing this circumferential discretisation is the finite element approach, leading 
to the method called the scaled boundary finite element method (SBFEM). Vu and 
Deeks (Vu and Deeks, 2006, 2008a, 2008b)  investigated the use of higher-order 
polynomial shape functions in the SBFEM, and demonstrated the SBFEM converged 
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significantly faster under p-refinement than under h-refinement. The development of 
meshless methods provided another approach to building circumferential 
approximations for the scaled boundary method. Deeks and Augarde  (Deeks and 
Augarde, 2005) developed a Meshless Local Petrov-Galerkin method scaled 
boundary method (MLPG-SBM) and and He et al (He et al, 2012) developed an 
Element-free Galerkin scaled boundary method (EFG-SBM). This work showed that 
these two meshless scaled boundary methods gave a higher level of accuracy and rate 
of convergence than the conventional SBFEM using linear or quadratic elements, 
with the EFG-SBM performing slightly better than the MLPG-SBM. 

In this paper, the possibility of using shape functions based on the terms of a 
Fourier series for the circumferential approximation of the SBFEM is investigated. 
Fourier interpolations containing trigonometric functions have been applied to both 
the finite element method (FEM) and the boundary element method (BEM). For 
example, Guan et al. (Guan et al, 2006) developed a Fourier series based FEM for the 
analysis of tube hydroforming, and showed that this Fourier shape function reduced 
the number of degrees of freedom required. Javaran and Khaji (Javaran, 2011; Khaji 
and Javaran, 2013) applied Fourier radial basis functions into the BEM, and showed 
that the resulting BEM is much more accurate than the BEM using classic Lagrange 
shape functions. Although the advantages of Fourier based FEM and BEM have been 
illustrated in previous work, to date there has been no work reported on the use of 
Fourier shape functions in the SBFEM.    

A new Fourier-based scaled boundary method (F-SBM) is presented in this 
paper. A set of shape functions based on Fourier series expansion is derived, and 
augmented with linear shape functions. The new shape functions provide good 
approximation to both trigonometric and polynomial functions in the circumferential 
direction of the scaled boundary system. In the numerical example, the F-SBM is 
used to solve a two-dimensional elastostatic problem. The accuracy and convergence 
of F-SBM is compared with the conventional SBFEM using both linear and quadratic 
elements and with the EFG-SBM. Superior performance in terms of both accuracy 
and convergence is demonstrated.  

A Fourier shape function 
This paper employs shape functions obtained from the well-known Fourier series. 

Based on the theory of the Fourier series, any continuous function ( )f r  maybe 
represented by a series of trigonometric functions as  
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where  0a , na , nb  and maxL  represent the Fourier series parameters. 
Thus on the boundary at 1ξ = , the displacement can be approximated as  
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where s  is the circumferential coordinate in scaled boundary element, L  is the length 
of the boundary and m  represents the order of Fourier series. 

To preserve C0 continuity between the edges or elements, linear polynomial 
functions terms are added into the standard Fourier approximation as  
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where 1α  and 1β  represent the values of the function at the end nodes of the element. 
        While it is possible to use the Fourier parameters as the unknown boundary 
parameters when solving the scaled boundary finite element equations, here the 
parameters in the Fourier expansion above are transferred to nodal values at equally 
spaced nodes along each element for ease of applying essential boundary conditions 
and enforcing C0 continuity between elements. If ( )2 2m +  nodes are used, the nodal 

values vector { }u  can be related to the parameters in Equations (3) by 

{ } { }ˆ[ ]u T u=                                                                                                 (4) 

 where  { } { }1 1 1 1ˆ T
m mu a a b bα β=   , and [ ]T  is a transfer matrix assembled 

as     
( ) , 1, 2 2 2ij j iT S i j mψ= = +

                                                                   (5) 
 where iS  is the circumferential coordinate of the ith node, and the component 
functions of the Fourier expansion are 
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      Inverting Equation (4), the parameters { }û  in Equation (3) can be related to the 
nodal values {uh} by 

{ } { }1ˆ [ ]u T u−=                                                                                              (7) 
      Thus the approximation for displacement can be rewritten as  

{ } { }1( ) [ ]hu s T uψ −=                                                                                   (8) 
      The shape functions relating to the nodal displacements are hence  

{ } { } 1[ ]Tϕ ψ −=                                                                                             (9) 
and the shape function matrix for the scaled boundary method then becomes 
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Figure 3 plots these Fourier shape functions for m = 2, where 6 nodes are 
required.          
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Figure 1 The Fourier shape functions for order 2m =  

Performance of the method 

An infinite plate with a through crack 

The example refers to the problem of determining the mode I stress intensity 
factor (SIF) IK  for a through crack in an infinite plate, as illustrated in Figure 9. The 
applied stress 0 1σ = . Due to the symmetry, one quarter of the problem is modelled, 
as shown in Figure 3, with the model consisting of a bounded domain, with the 
scaling centre at the crack tip (point E), and an unbounded domain, with the scaling 
centre at the middle of crack (point A). The nodes are introduced on the edges AB, 
BC and CD with uniform spacing, ds . The problem has an exact solution, 

0 2IK aσ π= . 

 
Figure 2 Infinite plate with a through crack: geometry and loads 
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Figure 3 Scaled boundary model of an infinite plate with a through crack. 

 
In Table 1 the F-SBM solutions are compared with the SBFEM with linear 

elements and the EFG-SBM with linear basis. The results show that the F-SBM 
achieves high accuracy for SIF, for example, a relative error as low as 0.0000555% 
can be obtained using 53 nodes. In comparison with SBFEM and EFG-SBM, it can 
be seen that F-SBM has higher accuracy when the same number of nodes are used.  

 

Table 1 The results of SIF using F-SBM 

 
 
 
 

Number 
of 

nodes 
F-SBM Error% SBFEM 

(Linear) Error% EFG-SBM 
(Linear) Error% Exact 

Solutions 

13 1.773047828 3.35e-2 1.765973947 3.65e-1 1.770648223 1.02e-1 

1.772453851 

21 1.771909603 3.07e-2 1.770015354 1.37e-1 1.772806367 1.99e-2 

28 1.772534634 4.56e-3 1.771193770 7.11e-2 1.772432519 1.20e-3 

37 1.772441208 7.13e-4 1.771691632 4.30e-2 1.772372556 4.58e-3 

45 1.772455534 9.49e-5 1.771443822 5.69e-2 1.772495119 2.33e-3 

53 1.772452866 5.55e-5 1.771456952 5.62e-2 1.772400534 3.01e-3 
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Conclusions 
A new SBFEM using Fourier shape functions is presented in this paper. The 

shape functions are based on the Fourier series expansion and augmented with 
additional linear shape functions terms. By using a transfer matrix, the nodal values 
are related with Fourier parameters, and in this way the essential boundary conditions 
can be conveniently handled. In the numerical example, the new approach has been 
shown to yield higher accuracy and faster convergence in comparison with the 
SBFEM using linear or quadratic elements and the EFG-SBM using linear or 
quadratic basis.  
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