
APCOM & ISCM

11-14
th

 December, 2013, Singapore

1

Parallel Implementation of Grammatical Evolution

*E. Kita
1,2

, Y. Lu¹, H. Sugiura
1
 and Y. Wakita

1

1
Department of Complex Science, Graduate School of Information Science, Nagoya University

Nagoya, JAPAN
2
Department of Computational Science, Graduate School of System Informatics, Kobe University

Kobe, JAPAN

*Corresponding author: kita@is.nagoya-u.ac.jp

Abstract

Grammatical Evolution (GE) is one of the evolutionary computations, which determine function or

program or program fragment satisfying the design objective, like Genetic Programming (GP). The

interesting feature of GE is to define the translation rule from the genotype (bit-string) to the

phenotype (function or program) in advance. The population of individuals (bit-strings) is evolved

toward better individual by using the translation rule and Genetic Algorithm (GA) search process.

The aim of this study is to discuss the effectiveness of parallel implementation for GE. The

parallel implementation is based on simple island model. The whole population is substituted into

sub-populations. The evolution process is performed individually in subpopulations and some

individuals are exchanged between subpopulations in any interval. Exchange of individuals is called

as migration. Better individual migration and randomly selected individual migration are compared.

The symbolic regression problem is considered as a numerical example. The results show

that, in random migration, longer migration interval is better for larger sub-population size and

shorter migration interval is better for smaller sub-population size and that, in better individual

migration, longer migration interval and larger sub-population size are better.

Keywords: Grammatical Evolution, Parallel Implementation, Island Model, Symbolic Regression

Problem.

Introduction

Evolutionary computations are algorithms based on the evolutionary process of living organism.

Genetic Algorithm (GA) and Genetic Program (GP) are very popular algorithms in this field [1,2].

The aim of GA is to find the solution of the optimization problem. Potential solutions are

represented by individuals as bit-strings. The population of individuals evolves to a better potential

solution by genetic operators such as selection, crossover, mutation, and so on. Although GP comes

from GA, their aims are different. GP is designed for finding the function, the program or the

program fragment satisfying the design objective. The potential solutions, which are represented as

the individuals in tree structure, evolve toward better solution by genetic operators.

GP has two difficulties. Firstly, the genetic operators are very complicated and the effect for

the search process is not obvious. Secondly, during the GP search process, genetic operators often

generate individuals which lead to invalid function or invalid program or invalid program fragment.

For overcoming these difficulties, Grammatical Evolution (GE) was presented [3,4]. The interesting

feature of GE is to define the translation rule from genotype (bit-string) to phenotype (function or

program) in advance. The translation rule is written in Backus Naur Form (BNF). Once the valid

translation rule is given, GE can generate the genotypes which lead to valid phenotypes. The search

process of GE is as follows. Initial population of individuals is defined by randomly generated bit-

strings. Genotypes are translated into the phonotype according to the translation rule and the fitness

is estimated. According to the fitness, the population of individuals is evolved toward better

solutions by the genetic operators.

2

 Except for the use of the translation rule, the GE search process is very similar to simple GA.

Therefore, the use of the improved GA algorithm can improve the search process of the original GE.

The aim of this paper is to use parallel GA for GE. The parallel implementation of GA is studied

widely [5]. The distributed Genetic Algorithm (DGA) based on Island model is employed in this

study [6]. In DGA, the population is divided into sub-populations. GA is applied for each sub-

population and then, individuals migrate from one sub-population to the other one at regular

interval. It is reported that DGA based on island model can find better solution than traditional GA

using single population. The algorithm is applied for symbolic regression problem in order to

discuss the search performance.

Table 1: Example of translation rule

(A) <expr> ::=

 |

<expr><op><expr>

<var>

(A0)

(A1)

(B) <op> ::=

 |

 |

 |

+

-

*

/

(B0)

(B1)

(B2)

(B3)

(C) <var> ::=

 |

 |

X

Y

Z

(C0)

(C1)

(C2)

Grammatical Evolution

Algorithm

The algorithm of the original GE is summarized as follows.

1. Translation rule is defined in Backus Naur Form (BNF).

2. Initial population is defined by randomly generated bit-strings.

3. Genotypes (bit-strings) are translated into phenotypes (function or program) according to the

translation rule.

4. Phenotype fitness is estimated.

5. Population is updated by genetic operators such as selection, crossover and mutation.

6. If the convergence criterion is satisfied, the process is terminated. Otherwise, process goes to

step 3.

Translation from Genotype to Phenotype

We would like to explain the translation from genotype from phenotype. The translation rule in

BNF syntax is shown in Table 1. It is shown from this table that the symbol <expr> has two

candidate symbols <expr><op><expr> and <var> and that the symbol <op> has four candidate

symbols +, -, * and / and that the symbol <var> has three candidate symbols X, Y and Z. The

symbols +, -, * and / denote the four arithmetic operators and the symbols X, Y and Z are variables.

Since the symbol <expr><op><expr> and <var> should be replaced again, they are called as

recursive symbols. The symbols +, -, *, /, X, Y and Z are called as terminal rules because they are

not replaced any more.

 When the start symbol is <expr> and the genotype is given as the binary

010001111101101110, the genotype is translated according to Table 1 as follows (Table 2).

1. The binary number 010001111101101110 is translated into the decimal number every 3bits as

follows.

010001111101101110  2 1 7 5 5 6

3

2. The symbol <expr> has two candidate rules and the first decimal number is 2. The remainder of

the decimal number 2 with respect to the candidate symbol number 2 is 0. Then, the symbol

<expr> is replaced with <expr><op><expr>.

<expr>  <expr><op><expr>.

3. Next replaced symbol is the leftmost recursive symbol <expr>.

4. The symbol <expr> has two candidate rules and the next decimal number is 1. The remainder of

the decimal number 1 with respect to the candidate symbol number 2 is 1. Then, the symbol

<expr> is replaced with <var>;

<expr><op><expr>  <var><op><expr>.

5. According to the similar process, the function Y+X is obtained from the binary number

010001111101101110.

Table 2: Symbol replacement process

Decimal Remainder Target symbol Selected symbol Symbol after replacement

Start <expr>

2 0 <expr> <expr><op><expr> <expr><op><expr>

1 1 <expr> <var> <var><op><expr>

7 1 <var> Y Y<op><expr>

5 4 <op> + Y+<expr>

5 1 <expr> <var> Y+<var>

6 0 <var> X Y+X

Parallel Grammatical Evolution

Algorithm

In the present algorithm, the parallel implementation of Grammatical Evolution is performed

according to Genetic Algorithm based on the island model. The whole population of the individuals

is divided into sub-populations and then, the original GE is performed at each sub-population. The

present algorithm is summarized as follows.

1. Translation rule is defined in Backus Naur Form (BNF).

2. Initial sub-populations are defined by randomly generated bit-strings.

3. Genotypes (bit-strings) are translated into phenotypes (function or program) according to the

translation rule.

4. Individual fitness is estimated.

5. Sub-populations are updated by genetic operators such as selection, crossover and mutation.

6. If the convergence criterion is satisfied, the process is terminated. Otherwise, the process goes

to next step.

7. Individuals are migrated from one sub-population to the other one at any interval.

8. Process goes to step 3.

Migration

Migration operator exchanges the individuals between the sub-populations. In this study, two

migration operators are compared.

 The individuals to be migrated are selected as follows.

1. Random migration.

Immigrant individuals are selected randomly from the sub-populations.

2. Better individual migration

Immigrant individuals are selected from the sub-populations according to the descending order

of the fitness value.

4

The migration frequency is given by the migration interval. The number of the migrated

individuals is given as the product of the number of individuals and the migration rate. The

migration topology is fixed.

Table 3: Translation rule

(A) <expr> ::=

 |

<expr><op><expr>

<var>

(A0)

(A1)

(B) <op> ::=

 |

 |

 |

+

-

*

/

(B0)

(B1)

(B2)

(B3)

(C) <var> ::=

 |

 |

X

Y

Z

(C0)

(C1)

(C2)

(D) <num>::=

 |

 |

 |

 |

 |

 |

 |

 |

1

2

3

4

5

6

7

8

9

(D1)

(D2)

(D3)

(D4)

(D5)

(D6)

(D7)

(D8)

(D9)

Table 4: Simulation parameters

Length of individual 800

Radix conversion bit-size 8 bit

Tournament size 3

Elite size 1

Crossover rate 0.9

Mutation rate 0.03

Number of sub-populations 2, 5, 10

Migration rate 0.1, 0.2, 0.5

Migration interval 2, 4, 8, 16

Numerical Example

Symbolic Regression Problem

Symbolic regression problem is to find the function which can represent accurately the given data

set; () () (). The real function is given as follows.

 () (1)

The variable is given as { } { }.
 The fitness is estimated by the average least square error as follows.

√∑ { () (̅)}

 (2)

5

The translation rule is shown in Table 3. The start symbol is <expr>. The tournament selection with

tournament size 3, one-point crossover operators and elitist strategy are employed.

Random Migration

Simulation parameters are shown in Table 4. Total number of individuals is 200. Maximum

generation is 100. Simulations are performed 100 times. Success rates are shown Tables 5, 6 and 7.

The success rate denotes, among 100 simulations, the percentage of simulations at which the exact

function can be found.

In case of the migration rate , the fastest convergence is observed at the number of

sub-populations and the migration interval . Second fastest convergence is at the

number of sub-populations and the migration interval or at the number of sub-

populations and the migration interval . In case of the migration rate , the

fastest convergence is observed at the number of sub-populations and the migration interval

 . Second fastest convergence is at the number of sub-populations and the migration

interval . In case of the migration rate , the fastest convergence is observed at the

number of sub-populations and the migration interval . Second fastest convergence

is at the number of sub-populations and the migration interval . It is concluded that

longer migration interval is better for larger sub-population size and shorter migration interval is

better for smaller sub-population size.

Table 5: Comparison of convergence speed (Random migration ; migration rate)

 72 73 75 70

 68 73 76 72

 75 66 65 60

Table 6: Comparison of convergence speed (Random migration ; migration rate)

 69 82 75 70

 73 79 81 65

 75 74 69 55

Table 7: Comparison of convergence speed (Random migration ; migration rate)

 70 70 61 63

 73 74 81 74

 82 72 67 52

Better Individual Migration

Simulation parameters are shown in Table 4. Total number of individuals is 200. Maximum

generation at each simulation is 100. Simulations are performed 100 times. Success rates are shown

Table 8, 9 and 10.

At the migration rate , the fastest convergence is observed at the number of sub-

populations and the migration interval . Second fastest convergence is at the number

of sub-populations and the migration interval . In case of the migration rate

 , the fastest convergence is observed at the number of sub-populations and the

migration interval . Second fastest convergence is at the number of sub-populations

and the migration interval or at the number of sub-populations and the migration

6

interval . In case of the migration rate , the fastest convergence is observed at the

number of sub-populations and the migration interval . Second fastest convergence

is at the number of sub-populations and the migration interval . It is concluded that

longer migration interval and larger sub-population size are better.

Table 8: Comparison of convergence speed (Random migration; migration rate)

 63 72 65 70

 62 60 62 61

 37 49 42 50

Table 9: Comparison of convergence speed (Random migration; migration rate)

 54 67 68 61

 49 45 59 67

 37 46 46 39

Table 10: Comparison of convergence speed (Random migration; migration rate)

 56 65 60 73

 44 57 58 55

 26 35 44 38

Conclusion

Parallel implementation of Grammatical Evolution based was presented in this study. The algorithm

is based on island model. The present algorithm was applied for the symbolic regression problem.

In random migration, it is concluded that longer migration interval is better for larger sub-

population size and shorter migration interval is better for smaller sub-population size. In better

individual migration, longer migration interval and larger sub-population size are better. In the

future, we would like to apply the present algorithm to industrial application problems.

References

[1] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press. 1975.

[2] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.

1992.

[3] C. Ryan, J. J. Collins, M. O'Neill. Grammatical Evolution: Evolving Programs for an Arbitrary Language.

Proceedings of 1st European Workshop on Genetic Programming, pp.83-95, Springer, 1998.

[4] C. Ryan, M. O'Neill. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language,

Springer, 2003.

[5] E. Cantu-Paz. Efficient and Accurate Parallel Genetic Algorithms, Springer, 2000.

[6] R. Tanese. Distributed Genetic Algorithms. Proceedings of the 3rd International Conference on Genetic

Algorithms, pp.434-439, Morgan Kaufmann, 1989.

