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Abstract 

Grammatical Evolution (GE) is one of the evolutionary computations, which determine function or 

program or program fragment satisfying the design objective, like Genetic Programming (GP). The 

interesting feature of GE is to define the translation rule from the genotype (bit-string) to the 

phenotype (function or program) in advance. The population of individuals (bit-strings) is evolved 

toward better individual by using the translation rule and Genetic Algorithm (GA) search process.  

The aim of this study is to discuss the effectiveness of parallel implementation for GE. The 

parallel implementation is based on simple island model. The whole population is substituted into 

sub-populations. The evolution process is performed individually in subpopulations and some 

individuals are exchanged between subpopulations in any interval. Exchange of individuals is called 

as migration. Better individual migration and randomly selected individual migration are compared.  

The symbolic regression problem is considered as a numerical example. The results show 

that, in random migration, longer migration interval is better for larger sub-population size and 

shorter migration interval is better for smaller sub-population size and that, in better individual 

migration, longer migration interval and larger sub-population size are better.  

Keywords: Grammatical Evolution, Parallel Implementation, Island Model, Symbolic Regression 

Problem.  

Introduction 

Evolutionary computations are algorithms based on the evolutionary process of living organism. 

Genetic Algorithm (GA) and Genetic Program (GP) are very popular algorithms in this field [1,2]. 

The aim of GA is to find the solution of the optimization problem. Potential solutions are 

represented by individuals as bit-strings. The population of individuals evolves to a better potential 

solution by genetic operators such as selection, crossover, mutation, and so on. Although GP comes 

from GA, their aims are different. GP is designed for finding the function, the program or the 

program fragment satisfying the design objective. The potential solutions, which are represented as 

the individuals in tree structure, evolve toward better solution by genetic operators.  

GP has two difficulties. Firstly, the genetic operators are very complicated and the effect for 

the search process is not obvious. Secondly, during the GP search process, genetic operators often 

generate individuals which lead to invalid function or invalid program or invalid program fragment. 

For overcoming these difficulties, Grammatical Evolution (GE) was presented [3,4]. The interesting 

feature of GE is to define the translation rule from genotype (bit-string) to phenotype (function or 

program) in advance. The translation rule is written in Backus Naur Form (BNF). Once the valid 

translation rule is given, GE can generate the genotypes which lead to valid phenotypes. The search 

process of GE is as follows. Initial population of individuals is defined by randomly generated bit-

strings. Genotypes are translated into the phonotype according to the translation rule and the fitness 

is estimated. According to the fitness, the population of individuals is evolved toward better 

solutions by the genetic operators.  
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 Except for the use of the translation rule, the GE search process is very similar to simple GA. 

Therefore, the use of the improved GA algorithm can improve the search process of the original GE. 

The aim of this paper is to use parallel GA for GE. The parallel implementation of GA is studied 

widely [5]. The distributed Genetic Algorithm (DGA) based on Island model is employed in this 

study [6]. In DGA, the population is divided into sub-populations. GA is applied for each sub-

population and then, individuals migrate from one sub-population to the other one at regular 

interval. It is reported that DGA based on island model can find better solution than traditional GA 

using single population. The algorithm is applied for symbolic regression problem in order to 

discuss the search performance.  

 

Table 1: Example of translation rule 

(A) <expr> ::=  

              | 

<expr><op><expr> 

<var> 

(A0) 

(A1) 

(B) <op> ::= 

             | 

             | 

             | 

+ 

- 

* 

/  

(B0) 

(B1) 

(B2) 

(B3) 

(C) <var> ::= 

             | 

             | 

X 

Y 

Z  

(C0) 

(C1) 

(C2) 

 

Grammatical Evolution 

Algorithm 

The algorithm of the original GE is summarized as follows.  

1. Translation rule is defined in Backus Naur Form (BNF). 

2. Initial population is defined by randomly generated bit-strings. 

3. Genotypes (bit-strings) are translated into phenotypes (function or program) according to the 

translation rule.  

4. Phenotype fitness is estimated.  

5. Population is updated by genetic operators such as selection, crossover and mutation.  

6. If the convergence criterion is satisfied, the process is terminated. Otherwise, process goes to 

step 3.   

Translation from Genotype to Phenotype 

We would like to explain the translation from genotype from phenotype. The translation rule in 

BNF syntax is shown in Table 1. It is shown from this table that the symbol <expr> has two 

candidate symbols <expr><op><expr> and <var> and that the symbol <op> has four candidate 

symbols +, -, * and / and that the symbol <var> has three candidate symbols X, Y and Z. The 

symbols +, -, * and / denote the four arithmetic operators and the symbols X, Y and Z are variables. 

Since the symbol <expr><op><expr> and <var> should be replaced again, they are called as 

recursive symbols. The symbols +, -, *, /, X, Y and Z are called as terminal rules because they are 

not replaced any more.  

 When the start symbol is <expr> and the genotype is given as the binary 

010001111101101110, the genotype is translated according to Table 1 as follows (Table 2).  

1. The binary number  010001111101101110 is translated into the decimal number every 3bits as 

follows.  

010001111101101110  2 1 7 5 5 6 
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2. The symbol <expr> has two candidate rules and the first decimal number is 2. The remainder of 

the decimal number 2 with respect to the candidate symbol number 2 is 0. Then, the symbol 

<expr> is replaced with <expr><op><expr>.  

<expr>  <expr><op><expr>.  

3. Next replaced symbol is the leftmost recursive symbol <expr>.  

4. The symbol <expr> has two candidate rules and the next decimal number is 1. The remainder of 

the decimal number 1 with respect to the candidate symbol number 2 is 1. Then, the symbol 

<expr> is replaced with <var>;  

<expr><op><expr>  <var><op><expr>.  

5. According to the similar process, the function Y+X is obtained from the binary number  

010001111101101110.  

 

Table 2:  Symbol replacement process 

Decimal Remainder Target symbol Selected symbol Symbol after replacement 

Start    <expr> 

2 0 <expr> <expr><op><expr> <expr><op><expr> 

1 1 <expr> <var> <var><op><expr> 

7 1 <var> Y Y<op><expr> 

5 4 <op> + Y+<expr> 

5 1 <expr> <var> Y+<var> 

6 0 <var> X Y+X 

Parallel Grammatical Evolution 

Algorithm 

In the present algorithm, the parallel implementation of Grammatical Evolution is performed 

according to Genetic Algorithm based on the island model. The whole population of the individuals 

is divided into sub-populations and then, the original GE is performed at each sub-population. The 

present algorithm is summarized as follows.  

1. Translation rule is defined in Backus Naur Form (BNF). 

2. Initial sub-populations are defined by randomly generated bit-strings. 

3. Genotypes (bit-strings) are translated into phenotypes (function or program) according to the 

translation rule.  

4. Individual fitness is estimated.  

5. Sub-populations are updated by genetic operators such as selection, crossover and mutation.  

6. If the convergence criterion is satisfied, the process is terminated. Otherwise, the process goes 

to next step. 

7. Individuals are migrated from one sub-population to the other one at any interval.  

8. Process goes to step 3.    

Migration 

Migration operator exchanges the individuals between the sub-populations. In this study, two 

migration operators are compared.  

 The individuals to be migrated are selected as follows.  

1. Random migration. 

Immigrant individuals are selected randomly from the sub-populations.  

2. Better individual migration 

Immigrant individuals are selected from the sub-populations according to the descending order 

of the fitness value.  
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The migration frequency is given by the migration interval. The number of the migrated 

individuals is given as the product of the number of individuals and the migration rate. The 

migration topology is fixed.  

 

Table 3: Translation rule 

(A) <expr> ::=  

              | 

<expr><op><expr> 

<var> 

(A0) 

(A1) 

(B) <op> ::= 

             | 

             | 

             | 

+ 

- 

* 

/  

(B0) 

(B1) 

(B2) 

(B3) 

(C) <var> ::= 

             | 

             | 

X 

Y 

Z  

(C0) 

(C1) 

(C2) 

(D) <num>::= 

             | 

             | 

             | 

             | 

             | 

             | 

             | 

             | 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(D1) 

(D2) 

(D3) 

(D4) 

(D5) 

(D6) 

(D7) 

(D8) 

(D9) 

 

Table 4: Simulation parameters 

Length of individual  800 

Radix conversion bit-size 8 bit 

Tournament size 3 

Elite size 1 

Crossover rate    0.9 

Mutation rate    0.03 

Number of sub-populations    2, 5, 10 

Migration rate    0.1, 0.2, 0.5 

Migration interval    2, 4, 8, 16 

Numerical Example 

Symbolic Regression Problem 

Symbolic regression problem is to find the function which can represent accurately the given data 

set; (     ) (     )   (     ). The real function is given as follows.  

 

 ( )                   (1) 

 

The variable   is given as {         }  {                              }. 
 The fitness is estimated by the average least square error as follows.  

 

   
 

  
√∑ { (  )   (̅  )}

   
          (2) 
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The translation rule is shown in Table 3. The start symbol is <expr>. The tournament selection with 

tournament size 3, one-point crossover operators and elitist strategy are employed.  

Random Migration 

Simulation parameters are shown in Table 4. Total number of individuals is 200. Maximum 

generation is 100. Simulations are performed 100 times. Success rates are shown Tables 5, 6 and 7. 

The success rate denotes, among 100 simulations, the percentage of simulations at which the exact 

function can be found.  

In case of the migration rate       , the fastest convergence is observed at the number of 

sub-populations      and the migration interval     . Second fastest convergence is at the 

number of sub-populations      and the migration interval      or at the number of sub-

populations       and the migration interval     . In case of the migration rate       , the 

fastest convergence is observed at the number of sub-populations      and the migration interval 

    . Second fastest convergence is at the number of sub-populations      and the migration 

interval     . In case of the migration rate       , the fastest convergence is observed at the 

number of sub-populations       and the migration interval     . Second fastest convergence 

is at the number of sub-populations      and the migration interval     . It is concluded that 

longer migration interval is better for larger sub-population size and shorter migration interval is 

better for smaller sub-population size.  

 

Table 5: Comparison of convergence speed (Random migration ; migration rate       ) 

                      

     72 73 75 70 

     68 73 76 72 

      75 66 65 60 

 

Table 6: Comparison of convergence speed (Random migration ; migration rate       ) 

                      

     69 82 75 70 

     73 79 81 65 

      75 74 69 55 

 

Table 7: Comparison of convergence speed (Random migration ; migration rate       ) 

                      

     70 70 61 63 

     73 74 81 74 

      82 72 67 52 

 

Better Individual Migration 

Simulation parameters are shown in Table 4. Total number of individuals is 200. Maximum 

generation at each simulation is 100. Simulations are performed 100 times. Success rates are shown 

Table 8, 9 and 10.  

At the migration rate       , the fastest convergence is observed at the number of sub-

populations      and the migration interval     . Second fastest convergence is at the number 

of sub-populations      and the migration interval      . In case of the migration rate 

      , the fastest convergence is observed at the number of sub-populations      and the 

migration interval     . Second fastest convergence is at the number of sub-populations      

and the migration interval      or at the number of sub-populations      and the migration 
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interval      . In case of the migration rate       , the fastest convergence is observed at the 

number of sub-populations      and the migration interval      . Second fastest convergence 

is at the number of sub-populations      and the migration interval     . It is concluded that 

longer migration interval and larger sub-population size are better.  

 

Table 8: Comparison of convergence speed (Random migration; migration rate       ) 

                      

     63 72 65 70 

     62 60 62 61 

      37 49 42 50 

 

Table 9: Comparison of convergence speed (Random migration; migration rate       ) 

                      

     54 67 68 61 

     49 45 59 67 

      37 46 46 39 

 

Table 10: Comparison of convergence speed (Random migration; migration rate       ) 

                      

     56 65 60 73 

     44 57 58 55 

      26 35 44 38 

Conclusion 

Parallel implementation of Grammatical Evolution based was presented in this study. The algorithm 

is based on island model. The present algorithm was applied for the symbolic regression problem. 

In random migration, it is concluded that longer migration interval is better for larger sub-

population size and shorter migration interval is better for smaller sub-population size. In better 

individual migration, longer migration interval and larger sub-population size are better. In the 

future, we would like to apply the present algorithm to industrial application problems.  
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