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Abstract 
An analysis scheme for the dynamic responses of functionally graded (FG) rectangular plates under 
moving loads is developed by using the third-order shear deformation plate theory (TSDT). It is 
assumed that material properties of the plate vary continuously in the thickness direction according 
to the power-law. The equations of motion are derived by using Hamilton’s principle. Analytic 
solution of simply supported FG rectangular plates is presented by using state-space methods. The 
displacement and stresses are computed in the plates with various structural parameters, and the 
effects of these parameters, such as power-law exponent index, are discussed in detail. In addition, 
the effects of the moving load on the dynamic responses of the plates are investigated as well. 
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1. Introduction 
The study of dynamic response of plates subjected to moving loads is of interestand of importance 
as well in the engineering field, as some of the results can be applicable to understand the dynamic 
behavior of bridge. Most of the previous studies on the plates subjected to moving loads have used 
the classical plate theory (CPT) or the first order shear deformation theory (FSDT). Hianget al.[5] 
used finite strip method to investigate the dynamic response of plate structure resting on an elastic 
foundation to moving loads. Lee et al.[7] investigated dynamic behaviors of single and two-span 
continuous composite plate structures subjected to multi-moving loads using finite element  
method. Vosoughi et al.[12] studies dynamic response of laminated rectangular plates on elastic 
foundation based on the higher order shear deformation theory and differential quadrature method. 
E.Ghafoori and M.Asghari[3] studied the dynamic response of laminated composite plates traversed 
by a moving mass or a moving force based on the first-order shear deformation theory using a finite 
element method. P.Malekzadeh et al.[8] used three-dimensional elasticity theory to investigate the 
dynamic response of cross-ply laminated thick plates subjected to moving load. Hao et al.[4]studied 
on nonlinear dynamic behavior of a simply supported functionally graded materials (FGMs) 
rectangular plate subjected to thermalmechanical loads. Qian et al.[9] studied a static and dynamic 
of rectangular functionally graded plate based on a higher-order shear and normal deformable plate 
theory by using a meshless local Petrov–Galerkin method. Akbarzadehet et al.[1] studies the 
dynamic response of a simply supported functionally graded rectangular plate subjected to 
thermomechanical loading by using the hybrid Fourier-Laplace transform method based on both the 
first-order and third-order shear deformation theories. Sun et al.[11] investigated the wave 
propagation and dynamic response of the rectangular FGM plates with completed clamped supports 
to consider the effects of transverse shear deformation and rotary inertia. However, the research 
works concerning the dynamic response of FG plates subjected to moving loads are still limited. 
 
In  the  this  paper,  exact  solutions  for  the  transient  response  of FG  rectangular  plate  are  
developed using the  third-order  shear  deformation plate  theory (TSDT) proposed  by  R.P. 
Shimpi[10].  The FG rectangular plate, with simply supported boundary conditions, is subjected to a 
concentrated moving load at the upper surface of the plate. Equations of motion are solved by using 
state-space methods and the effects of different parameters on the response of the plate are studied. 
The results are compared with finite element solutions for validation.  
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2. Equations of motion 

Let us consider a functionally graded plate in Figure.1: 

 
Figure 1.Model of FG Plate 

We assume that the gradation of material properties along the plate thickness is represented by the 
profile for volume fraction variation:  
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where ,E ρ denote generic properties of elastic modulus and mass density, ,c cE ρ   and ,m mE ρ  denote 
the properties on the top and bottom surfaces, respectively, and is a parameter that dictates the 
material variation profile through the thickness. Poisson’s ratios are assumed to be uniform. 
The  third-order shear  deformation  theory  used  in  the  present study  is  based  on  the  following  
representation  of  the  displacement  field across  the  plate  thickness as in Shimpi [10]: 
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where (U,V,W) are the displacement components of a point (x,y,z) in the plate, ( ), , ,b su v w w are the 
displacements of a point on the mid-plane at time t, respectively. 
The strains are computed from displacement fields in Eq. (2), and can be used in constructing the 
strain energy and kinetic energy expressions. Hamilton’s principle is used herein to derive the 
equations of motion; the equations of motion of plate are obtained as: 
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where P  is  the moving load and ( ),, , b s
i i iN Q M   are the  stress  resultants and the inertias ( )ˆ, ,i iI J J

are  defined  by:  
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The moving loadis given as 
( ) ( )( ) ( )( )mov movP P t x x t y y t= δ − δ −  

where ( )P t is the magnitude of the moving load; ( )movx t  and ( )movy t  are the coordinates of the 
location of the load. In this paper, it is assumed that ( )0 0 movP P , x t V t= =  and ( ) 2movy t b / .=  

3 Solution procedures  
The state-space approach has been used generally in the area of control theory to determine the 
responses of given systems. The state-space representations [6] of the dynamic systems will be  
used to analyze the transient response of simply supported FG rectangular plates with side 
dimensions  a and b. The Navier approach is used to derive the closed-form solutions of equations 
of motion. The sinusoidal function is chosen to satisfy all the boundary conditions as follows:  
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where : ,m n
a b
π πα β= =

.
 

Using (4), the expression in (3) can be written as follows: 
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For solving (5) by using the state space methods, (5) is needed to be rewritten as:   
 = +Z AZ b  (6) 
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The solution of (6) is obtained as 
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where 0t   is  the  initial time, ( )0tZ is  the  initial  response, and the exponential matrix ( )0t te −A  can be  
expressed  in  terms  of  the  matrix  of  eigenvectors and eigenvalues iλ    associated  with  the  
matrix  A. 

4 Numerical examples 
In order to investigate the legitimacy of the proposed method, an Al/Al2O3 plate composed of 
aluminum (as metal) and alumina (as ceramic) is considered. The elastic moduli are chosen to be 
the same as given in [2]: 0mE   7  GPa= , 302 /m=27 kg mρ , 0cE 38 GPa= , 00 3

c=38 kg/mρ . The 
Poisson’s ratio of the plate is assumed to be constant through the thickness and is equal to 0.3. 
Consider a simply supported square FG plate with a side-length 0 3a . m= and magnitude of load 

3
0P = 2 10 N× . 

To validate the presented approach, the results are compared with those of finite element solution 
by using ABAQUS software. The time histories of central deflection and normal stress at top(z=-
h/2) as functions of time for simply supported square FG plate with 2  0 05p , h / a .= = and 

15v m / s= , are plotted and compared in Figures 2 and 3. The results of this study are in good 
agreement with the finite element solutions. 
Figure4 contains plots of center transverse deflection as functions of time with parameter 

0 05h / a .= and 40v m / s= for the four cases with different power law index p=0,1,2,3, 
respectively. Figure4 shows that the oscillation of the plate deflection increases if power law index 
p increases, which makes the flexural rigidity high. 
In order to investigate the effect of velocity of moving loads on the plate responses, we consider 
square FG plate with parameter 0 3  0 05a . m, h / a .= = and 3p = for three cases of different 
velocities v=1,25,50m/s, respectively. The effect of velocity of moving loads can be seen from 
Figure 5; the effect of velocity of moving loads is not so huge for the case of displacement. 
However, the effect of moving load velocity is significant from the viewpoint of vibration of the 
plate. 
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Figure 2. The time variations of the deflection 

at central plate 
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Figure 3. The time variations of the normal 

stress at top (z=-h/2) of central plate 
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Figure 4. The time variations of the deflection 

at central plate with various  power law p 
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Figure 5. The time variations of the deflection 

at central plate with various  velocity v 
 

Conclusions 
In this article, analytical solutions of dynamic responses are obtained for FG plates employing a 
third-order plate theory base on state-space approach. The dynamic responses are considered for 
both forced vibration and free vibration. Comparison with finite element solution shows that the 
results of present approach are acceptable. The volume fraction power law along the plate thickness 
has great influence on the dynamic behavior of FG plate, and the deflections of plate can be 
controlled by choosing proper values of p.The results also confirm that the effect of velocity of 
moving loads is negligible. 

References 
Akbarzadeh, A. H., Abbasi, M., Hosseini zad, S. K., Eslami, M. R., (2011), Dynamic Analysis of Functionally Graded 

Plates Using The hybrid Fourier-Laplace Transform under Thermomechanical Loading. Meccanica, 46 pp. 1373-
1392. 

Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A., Ait Atmane, H., Adda Bedia, El Abbas, (2010), Bending of Thick 
Functionally Graded Plates Resting on Winkler–Pasternak Elastic Foundations. Mechanics of Composite Materials, 
46 pp. 425-434. 

Ghafoori, E., Asghari, M., (2010), Dynamic Analysis of Laminated Composite Plates Traversed by a Moving Mass 
Based on a First-Order Theory. Composite Structures, 92 pp. 1865-1876. 

Hao, Y. X., Zhang, W., Yang, J., Li, S. Y., (2011), Nonlinear Dynamic Response of a Simply Supported Rectangular 
Functionally Graded Material Plate under the Time-Dependent Thermalmechanical Loads. Journal of Mechanical 
Science and Technology, 25 pp. 1637-1646. 

Huang, M., Thambiratnam, D., (2002), Dynamic Response of Plates on Elastic Foundation to Moving Loads. Journal of 
Engineering Mechanics, 128 pp. 1016-1022. 

Khdeir, A. A., Reddy, J. N., (1989), Exact-Solutions for the Transient-Response of Symmetric Cross-Ply Laminates 
Using a Higher-Order Plate-Theory. Composites Science and Technology, 34 pp. 205-224. 

Lee, S. Y., Yhim, S. S., (2004), Dynamic Analysis of Composite Plates Subjected to Multi-Moving Loads Based on a 
Third Order Theory. International Journal of Solids and Structures, 41 pp. 4457-4472. 



6 
 

Malekzadeh, P., Fiouz, A. R., Razi, H., (2009), Three-Dimensional Dynamic Analysis of Laminated Composite Plates 
Subjected to Moving Load. Composite Structures, 90 pp. 105-114. 

Qian, L. F., Batra, R. C., Chen, L. M., (2004), Static and Dynamic Deformations of Thick Functionally Graded Elastic 
Plates by Using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Local Petrov–Galerkin 
Method. Composites Part B: Engineering, 35 pp. 685-697. 

Shimpi, R. P., Patel, H. G., (2006), A Two Variable Refined Plate Theory for Orthotropic Plate Analysis. International 
Journal of Solids and Structures, 43 pp. 6783-6799. 

Sun, Dan, Luo, Song-Nan, (2011), The Wave Propagation and Dynamic Response of Rectangular Functionally Graded 
Material Plates with Completed Clamped Supports under Impulse Load. European Journal of Mechanics - 
A/Solids, 30 pp. 396-408. 

Vosoughi, A. R., Malekzadeh, P., Razi, H., (2013), Response of Moderately Thick Laminated Composite Plates on 
Elastic Foundation Subjected to Moving Load. Composite Structures, 97 pp. 286-295. 

 
 


	Ta DuyHien¹, Hyuk-Chun Noh1*
	Abstract
	Keywords: Analytical solution, Dynamic response, functionally graded plate, moving loads.

	1. Introduction
	2. Equations of motion
	3 Solution procedures
	4 Numerical examples
	To validate the presented approach, the results are compared with those of finite element solution by using ABAQUS software. The time histories of central deflection and normal stress at top(z=-h/2) as functions of time for simply supported square FG ...
	Figure4 contains plots of center transverse deflection as functions of time with parameter and for the four cases with different power law index p=0,1,2,3, respectively. Figure4 shows that the oscillation of the plate deflection increases if power law...
	In order to investigate the effect of velocity of moving loads on the plate responses, we consider square FG plate with parameter and for three cases of different velocities v=1,25,50m/s, respectively. The effect of velocity of moving loads can be see...

	Conclusions
	References

