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Abstract 

High-order simulation of flows containing shock waves is an extremely difficult task 

due to the discontinuous changes in flow properties across the shock. The present 

work investigates a shock-detecting sensor for filtering of high-order compact finite-

difference schemes to examine the shock-capturing in direct simulation of Navier-

Stokes solver. Based on the accuracy and minimum dissipation error, the shock-

detecting sensor is selected for the DNS studies. The implementation of high 

resolution simulations using sixth-order compact schemes with a fourth-order two-

register Runge-Kutta method is validated through selective test problems. Through 

several numerical experiments (including an inviscid shock/vortex interaction, a 

viscous shock/vortex interaction, and a shock/mixing layer interaction) the accuracy 

of the nonlinear filter is examined. The results indicate that the shock-detecting 

sensor works well, and can be used for future simulations of turbulent flows 

containing shocks. 

Keywords: shock-detecting sensor, shock-capturing, nonlinear filter, high-order 

scheme.  

Introduction 

‎Numerical investigation of high speed turbulent flows‎, ‎including vortices and 

shocks‎, ‎can be found in many engineering applications‎. ‎In order to resolve a wide 

range of length and time scales in these flows‎, ‎the compact methods proposed by Lele 

(1992) are typically used in DNSs of turbulent flows as well as in computational 

aeroacoustics (CAA)‎. ‎The compact schemes contain a smaller truncation error 

compared with non-compact schemes of the same order, and required smaller 

numerical stencil size‎. 

 

‎As mention above‎, ‎the accurate compact central scheme is required to preserve the 

vortical flow structures; however‎, ‎it does not have shock capturing capability (Lo, 

Blaisdell, & Lyrintzis, 2010)‎. ‎Meanwhile‎, the ‎traditional second-order accurate shock 

capturing schemes are usually not suitable for turbulence simulations due to 

dissipative feature‎. ‎Therefore‎, ‎high-order TVD schemes‎, ‎the extension of Godunov 

algorithm using high-order reconstructions (Colella & Woodward, 1984; Van Leer, 

1974) and the creation of essentially non-oscillatory (ENO) (Harten & Osher, 1985; 

Harten, Engquist, Osher, & Chakravarthy, 1987; Harten, Osher, Engquist, & 

Chakravarthy, 1986; Shu & Osher, 1988, 1989) and weighted essentially non-

oscillatory (WENO) (Jiang & Shu, 1996; Liu, Osher, & Chan, 1994) schemes are 

developed to enhance the methods to have shock capturing ability‎. ‎Assessment of the 
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WENO scheme for numerical simulations of compressible turbulence with shock 

waves shows that the WENO scheme can serve as a reliable tool for DNS of 

compressible turbulence (Chaudhuri, Hadjadj, Chinnayya, & Palerm, 2010; Johnsen 

et al., 2010)‎. 

 

‎The complicated algorithms of the above methods and some deficiencies encourage a 

few researchers to use high-order compact finite-difference schemes with a special 

kind of shock detecting sensor (Bogey, de Cacqueray, & Bailly, 2009; Hadjadj, Yee, 

& Sjögreen, 2012; Mahmoodi Darian, Esfahanian, & Hejranfar, 2011; Sjögreen & 

Yee, 2004; Visbal & Gaitonde, 2005; Yee, Sandham, & Djomehri, 1999; Yee & 

Sjögreen, 2008). ‎In other words‎, ‎a shock-detecting sensor restricts the use of second-

order filter to regions near shocks‎, ‎therefore‎, ‎the dissipation can be applied only in the 

large gradient regions (i.e. ‎shocks) and the spatial higher-order filter is applied to 

other smooth regions instead‎. ‎In addition‎, ‎since these hybrid filters can be applied 

once to the solutions after each full time step‎, ‎the computational cost is considerably 

less than that of traditional shock capturing schemes‎. ‎ 

 

‎‎The motivation of the present work is to develop a reliable numerical solver in a fully 

compressible formulation using high-order accurate schemes and extending the 

shock-detecting sensor introduced by (Mahmoodi Darian et al., 2011)‎ to the general 

curvilinear coordinates ‎‎for simulation of subsonic turbulence, ‎based on direct 

numerical simulation (DNS)‎, ‎and supersonic flows with vortical flows interacting 

with shocks waves‎. 

Numerical Methods 

Governing Equation and Discretization Scheme 

‎Governing equations are the unsteady dimensionless compressible Navier-Stokes 

equations ‎in curvilinear coordinates ( , ,   )‎, ‎are written in conservative form. ‎The 

use of low-dissipation‎, ‎high-order schemes is an essential ingredient when computing 

compressible flows‎. ‎The objective is to avoid excessive numerical dissipating of the 

flow features over a wide range of length scales‎. ‎For instance‎, ‎the family of compact 

schemes can be a good choice to achieve this goal‎. ‎The computation of all derivatives 

is carried out by a sixth-order compact central scheme (Lele, 1992). ‎On near-

boundary nodes‎, ‎accurate non-central or one-sided compact schemes are 

considered. ‎In this study‎, ‎the time integration is performed by means of a fourth-order 

accurate Runge-Kutta method with two-register storage (Kennedy, Carpenter, & 

Lewis, 2000). In addition‎, ‎non-reflecting boundary conditions for compressible flow 

in curvilinear coordinates (Chen & Zha, 2006) are used‎. 

Description of the sensor and the nonlinear filter 

‎As the filter form introduced in (Mahmoodi Darian et al., 2011)‎, ‎the numerical filter 

equation in the conservative form is‎ 

   1 1

1/2 1/2( )n n

j j j j

t
U U F F



 

 


  


    (1) 

where t  is the time-step and   is the grid size in   direction‎. ‎The   and   is 

equal to 1.‎‎For a 2m th-order explicit linear filter one can have‎: 

   
( ) 1 ( ) 1

1/2 ( 1) ( )m m m m

j jF U
 
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‎where   is the modified characteristic velocity‎, in curvilinear coordinates, ( )m  is the 

dissipation coefficient and   and   are the forward and backward difference 

operators‎, ‎which are defined by 

    1 1,j j j j j jU U U U U U        

‎The modified characteristic velocity‎,   is a weighted average between maximum 

characteristic velocity in the entire computational field, max,global , and local 

characteristic velocity, 1/2j  : 

     max, 1/21global j           

where‎ j  ‎is‎ the characteristic velocity (an eigenvalue of the flux jacobian). 

‎There are good reasons that the second-order linear filter is suitable for discontinuous 

regions which is not the case for the higher-order linear filters‎. ‎On the other hand‎, ‎the 

high-order linear filters have desirable properties in smooth regions‎. ‎Consequently‎, ‎it 

is desirable to have a nonlinear filter which acts as a second-order linear filter near 

the discontinuities and behaves as a high-order linear filter in smooth regions (Bogey 

et al., 2009; Visbal & Gaitonde, 2005)‎. ‎In this regard‎, ‎we write the numerical filter 

flux as a combination of the second‎- ‎and a higher-order filter flux‎: 

   (1) ( )

1 , 1m

mF F F m        (3) 

‎where 1  and m are the nonlinear weights controlling the amount of the second‎- ‎and 

2m th-order filters‎. ‎The proper design of these weights is essential to have high 

accuracy in smooth regions and to obtain non-oscillatory sharp discontinuities‎. ‎The 

following weights‎‎are‎proposed‎by‎(Mahmoodi Darian et al., 2011): 

   2 2

1 1/2 1/21 exp( ), exp( )e j m e jc e c e         (4) 

‎where ec  is a positive constant number‎. ‎This definition ensures both 1  and m  are 

between 0 and 1. ‎Note that 0ec  reduces the filter to the 2m th-order linear filter and 

ec   corresponds to the second-order linear filter‎. ‎The term 1/2je   is a kind of 

smoothness measurement which is defined as‎ 

   1/2 1

ˆ| |
max( , ),          

j j

j j j j

j

U U
e e e e

D
 


     (5) 

‎and ˆ
jU  is the interpolated value of U at the point jx using the neighboring points 

1, ,{ }j k k mU   ‎, ‎which is computed as‎ 
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   (6) 

‎Therefore‎, ‎the numerator in (5) is the error of a 2m th-order interpolation‎. ‎The 

denominator jD  is a scaling value. For more details see the (Mahmoodi Darian et al., 

2011). 

 

‎In equation (5) some sort of scaling is needed to have a measure to distinguish the 

large interpolations errors from the small ones‎. ‎‎For this reason‎, ‎we propose the 

following scaling‎ 

 max min max min,    (1 ) ,  g g l l

j s g s l g lD c S c S S U U S U U         (7) 
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‎where gS and lS are the global and local scales‎, ‎respectively‎. ‎Also‎, sc is the scaling 

constant which is a positive number smaller than unity‎. ‎The global and local 

maximum and minimum are defined as‎: 

  
max min

max min

max ( ),   min ( ),  1

max ( ),  min ( ), 

g g

k k k k

l l

k k k k

U U U U k jmax

U U U U j m k j m

   

      
  (8) 

‎ Numerical Experiments 

1D problems: Linear wave equation and Shock-tube  

In the first test case, the linear wave equation is solved. The initial condition is a 

periodic function similar to work of Mahmoodi Darian et al., (2011). The equation is 

solved with a uniform grid of 1/ 200x   and a fixed time-step of 0.002t   up to 

6t   corresponding to three time periods. Both linear and nonlinear filters produce 

nearly the same results in the smooth regions as shown in Fig. 1.  

 

In the second test case, a well-known Riemann problem introduced by Sod (1978) is 

solved. The equations are the compressible one-dimensional Euler equations. The 

numerical solutions are obtained at 2t  with a uniform grid of 400 points and 

CFL=0.2. In Fig. 2 the results are compared with analytical solution. 

 

In both test cases, it can be seen that the non linear filter capture discontinuities 

sharply.   

 

 
Figure 1. ‎‎Linear wave equation Figure 2. ‎‎Pressure and density distribution 

2D Inviscid Shock-Vortex interactions 

This is a two-dimensional test case that describes the interaction between a stationary 

shock and a vortex (Jiang & Shu, 1996). ‎A stationary Mach 1.1 shock is positioned at 

0.5x   and normal to the x -axis similar to work of  (Jiang & Shu, 1996)‎.  

 

‎The results are obtained with a uniform grid of 251 101  and CFL=0.1 . ‎The 

coefficients ,  e sc c  and‎   for the nonlinear filter are set to 200, ‎0.1 and 1, 

respectively‎. ‎The non-reflecting far-fielde boundary conditions are applied in the top 

and bottom faces and the non-reflecting outflow boundary condition is set at the 

downstream‎. ‎The pressure contours are displayed in Fig‎. 3. ‎Eighteen contour lines 

from 0.59 to 0.78 are used‎. ‎It can be seen that the sensor resolve the vortex 

properly‎. ‎Fig‎. 4(a) displays the pressure distribution along the 0.5y   section at 

0.6t M   before and after the shock‎. The pressure distributions in some extreme 

zones are zoomed in figures 4(b)-4(d). 
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‎The effect of grid on the sensor resolution is presented in Fig‎. ‎5(a) by the pressure 

distribution along the 0.5y   section‎. ‎It can be seen that the shock is captured by 

nonlinear filter even in the coarse grid‎. The pressure distributions in some extreme 

zones are zoomed in figures 5(b)-5(d). ‎The nonlinear sensor is designed for wide 

range of shock strength‎. ‎In the Fig‎. ‎6(a)‎, ‎it can be seen that the strong shock is 

captured by nonlinear sensor properly‎. The pressure distributions in some extreme 

zones are zoomed in figures 6(b)-6(d). ‎In the present case‎, ‎the slip-wall (reflecting) 

boundary conditions are applied in the top and bottom faces due to investigation on 

the effects of shock reflection on the results. 

 

Figure 3. ‎Pressure contours for the 2D 

shock–vortex interaction at 0.6t M   (18 

contours from 0.59 to 0.78)‎. 

Figure 4. ‎‎Pressure distribution along 

the 0.5y   section at 

0.6t M   ‎for the Inviscid shock-

vortex interaction‎. 

2D Viscous Shock-Vortex interactions 

‎This case is the two-dimensional compressible vortex convected through a normal 

shock‎. ‎This is a typical test used to evaluate the diffusive or dispersive property of 

scheme i.e. ‎used to evaluate of shock-capturing scheme‎. ‎The configuration 

corresponds to an isolated Taylor vortex with a Mach number 1.1588M   and a 

Reynolds number 2000Re  , ‎is initially superimposed on a uniform flow field 

aligned along the x -direction‎‎similar‎to‎(Lo et al., 2010). ‎The CFL  number is set to 

0.1 with 200ec  ‎, 0.1sc   and 1   for the nonlinear filter‎. ‎The non-reflecting far-

field boundary conditions are applied in the top and bottom faces and the non-

reflecting outflow boundary condition is used at the downstream‎. 

 

The pressure contour at 0.7t   is shown in Fig. 7‎. ‎Figure 8 shows the density 

distributions at 0.7t   along side of the results of (Lo et al., 2010). ‎It can be seen that 

the sensor resolve the vortex properly in the viscous field‎. ‎Along the line of 1y  , ‎the 

vortex core at 0.7t   is located at 1.16x   and a downstream propagating acoustic 

wave is around 1.8x  ‎. 
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Figure 5. ‎‎Effect of grid on the pressure 

distribution along the 0.5y   section at 

0.6t M  . 

Figure 6. ‎‎Pressure distribution along the 

0.5y   section for strong shock 

2.0M   (grid 502×201). 

Figure 7. ‎‎‎Pressure contours at t=0.7 by a 

grid 203×203 (20 contours from 0.527 to 

0.817)‎. 

Figure 8. ‎‎‎‎Instantaneous density 

distribution at t=0.7 along y=1 by a grid 

203×203 and 407×407. 

Shock-Mixing layer interactions 

‎This case is used to evaluate the performance of the shock capturing schemes for 

interactions of shock waves and shear layers (Lo et al., 2010; Yee et al., 1999)‎. ‎Figure 

9 shows the schematic view of the flow configuration‎. ‎An oblique shock originating 

from the upper-left corner interacts with shear layers where the vortices arising from 

shear layer instability‎. ‎This oblique shock is deflected by the shear layer and then 

reflects from the bottom slip wall‎. ‎Simultaneously‎, ‎an expansion fan forms above the 

shear layer and at the downstream‎, ‎a series of shock waves form around the 

vortices‎. ‎The outflow boundary has been arranged to be supersonic everywhere‎. ‎The 

computational domain were taken to be 200xL   and 40yL  . ‎The inflow boundary 

condition is specified with a hyperbolic tangent profile (see the stream (1) and (2) in 

Fig‎. 9)‎, 

    ˆ ˆ2.5 0.5tanh 2 ,   with   / 2yu y y y L     

The only transverse-velocity fluctuations are added to the inflow as‎: 

      
2

2

1

ˆcos 2 / exp /k k

k

v a kt T y b 


     
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‎with the period / cT u ‎, ‎convective velocity 2.68cu  ‎, ‎the wavelength 30   and 

the other constants are given by 1 2 110,  0.05,  0b a a     and 2 / 2  ‎, ‎similar 

to (Yee et al., 1999)‎. ‎The two streams have the same inflow pressure and stagnation 

enthalpies‎. ‎‎All properties are normalized by the properties of the stream (1)‎. 

 

For the left and top boundaries‎, ‎supersonic inflow imposed‎, ‎whereas slip-wall 

conditions are assumed at the bottom boundary to avoid any boundary-layer 

formation and subsequent complexities arising from the shock/boundary layer 

interaction‎. ‎At the outflow the non-reflecting outflow conditions are assumed‎. A grid 

dependency study using four different meshes, namely mesh-1 512×128 (uniform 

and non-uniform): mesh-2: 1024×256, mesh-3: 2048×512 and mesh-4: 4096×1024 

(about 4.2 million points). Figures 10 show the Numerical schlieren based on density, 

pressure and shadowgraph contours. From the figures, it can be seen that the shapes 

of the vortices are resolved properly, and the shocklets generated by the vortices in 

the downstream region. The shock-detecting sensor provides high quality vortices and 

downstream shocklet resolution. 

Figure 9.‎‎Schematic view of the shock/mixing-layer interaction configuration 

Figure 10.‎‎Numerical schlieren based on (a) density‎, ‎(b) pressure, and (c) 

shadowgraph, ‎for a 2048×512 grid with ,  200 0.1e sc c   and 1   for the filter‎. 

Conclusions 

‎In the present study‎, a Navier-Stokes computational methodology for turbulent 

supersonic flows based on high-order compact finite-difference schemes is developed 

and ‎the shock-detecting sensor has been extended and tested for several test 

cases‎. ‎The sensor is based on an interpolation error scaled by a suitable scaling value 

which scales the large errors by their local scale and the small errors by a proportion 

of the global scale‎. ‎The sensor is developed in curvilinear coordinates and tested 

through several test cases including a 2D stationary shock with a moving vortex, and 

a 2D shock/mixing layer interaction. The results indicate that the shock-detecting 

sensor works well, and can be used for future simulations of turbulent flows 

containing shocks. 
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