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Abstract 

The multigrid method has proved to be effective for a large class of numerical methods. 

In this study, a strategy based on Full Approximation Storage (FAS) scheme is 

implemented together with Full Multigrid Algorithm (FMG) to accelerate convergence of 

steady state solutions of the two-dimensional compressible Euler equations on Graphics 

Processing Unit (GPU). The Beam and Warming linearization scheme in curvilinear 

coordinates is used to discretize the governing equation. The second-order central and the 

fourth-order compact finite-difference schemes are applied for spatial discretization. A 

high-performance GPU-implemented block-tridiagonal solver based on Block Cyclic 

Reduction (BCR) algorithm is utilized. The proposed BCR solver is applied to finite-

difference discretization on structured grids via Alternating Direction Implicit (ADI) 

scheme. Attention is directed towards the computational performance of the V-cycle and 

W-cycle multigrid strategies in two and three grid levels using the NVIDIA GTX480 

graphics card. Speedups between 2x–6.2x are achieved in comparison to the Intel Core 

i7-920 2.67GHz CPU for different grid sizes. 

Keywords: Euler Equations,  high-order method,  Multigrid Acceleration, GPU 

computing, Block-tridiagonal solver  

Introduction 

Among the different schemes that are proposed to accelerate convergence rate such as 

local time stepping, residual smoothing, multigrid method and most recently local 

preconditioning, the multigrid method has received great attention. In spite of time 

stepping schemes that efficiently damp high-frequency error components of numerical 

solutions, the multigrid method can accelerate the convergence rate by damping the low-

frequency error components. This method was first introduced by Fedorenko (1962) and 

Bakhvalov (1966) and then developed by Brandt (1977). Although the multigrid theory 

was first developed for elliptic problems, it has been demonstrated in later works by (Ni, 

1982; Jameson, 1983) that multigrid method can also greatly affect the convergence rate 

of numerical schemes applied to Euler equations. Recently, there have been some studies 

to implement the multigrid methods on high-order numerical discretization (Gupta, 

Kouatchou, & Zhang 1997; Sakurai, Aoki, Lee, & Kato 2002). 

 

The multigrid method has also been developed for the implicit schemes, which enabled 

the utilization of the ADI methods (Jameson and Yoon, 1986). In this matter, the 

computational cost of block-structure matrix inversions is expensive. Therefore, 
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accelerating the linear system solution is an effective approach towards the 

computational performance improvement. 

 

Recent developments on Graphics Processing Units (GPU) have led to a high computing 

power device with a GPU-oriented programming language (CUDA), which enables the 

applicability of GPU devices for accelerating a variety of CFD problems.  

 

To accelerate the solution of block tridiagonal matrices, appeared in the ADI 

discretization of the multigrid method, on GPUs, the parallel Cyclic Reduction (CR) 

algorithm is at the center of attention. This algorithm was developed for block tridiagonal 

systems by Heller (1976). Performance of high-rank block cyclic reduction solver on 

distributed memory CPU cluster was reported in work by (Hirshmman, Perumalla, 

Lynch, & Sánchez, 2010). A recent implementation of BCR algorithm on GPUs was 

done by (Stone, Duque, Zhang, Car, Owens, & Davis, 2011; Baghapour, Esfahanian, 

Torabzadeh, Mahmoodi Darian, 2013) for different CFD applications. 

  

In the current work, a multigrid method based on FAS scheme is implemented beside a 

FMG scheme (Brandt, 1981) to accelerate convergence of steady state solutions of the 

two-dimensional compressible Euler equations. Alternate Directional Implicit (ADI) 

method is used for time advancement and the second-order central and fourth-order 

compact finite-difference schemes are applied to spatial discretization. The 

computational performance of the V-cycle and W-cycle multigrid strategies in two and 

three grid levels is investigated by using the NVIDIA GTX480 graphics card.  

Governing Equations 

The two-dimensional Euler equations for a Cartesian coordinate system are given by: 
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and 

  

x yU u v   , x yV u v   ,  1J x y x y   

    (3) 

 

The variables , , , , ,p T u v and E are pressure, density, temperature, velocity components 

and total energy, respectively. Assuming air as an ideal gas, the equation of state is used 

to calculate the pressure and temperature: 
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where  is the ratio of specific heats and R is the gas constant.  

Numerical Method 

Spatial Discretization 

For spatial discretization, the second-order central and the fourth-order compact finite 

difference schemes are applied. A general centered compact scheme (Lele, 1992) for the 

first derivative is the following: 

 

3 3 2 2 1 1
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Herein, f and f  can be any flow variable and its derivative, respectively. x is the grid 

spacing in x-direction. Depending on the coefficients a and ,b  a tridiagonal or a 

pentadiagonal system will be produced. The compact method used in this study is as 

following: 
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Multigird Method 

The FAS scheme for two grid levels with multigrid V-cycle is described as follows, 

where the fine grid is denoted by the h  subscript.  

1) Calculate the solution correction ( hQ ) on the fine grid and update the solution 

on the fine grid:
 

1n n

h h hQ Q Q    

2) Calculate the fine grid residual: hR   

3) Transfer value of conservative variables to the coarse grid:
 

2

2

h

h h hq I q  

 where q JQ and 2h

hI  is the restriction operator (Wesseling, 1995).  

4) Collect the residuals on the fine grid for the coarse grid: 2

2

t h

h h hR I R    

5) Calculate the residuals on the coarse grid using restricted conservative variables 

from the fine grid to the coarse grid:  (0)

2 2h hR Q . To restrict flow variable from the 

fine grid to the coarse grid, a full-weighted restriction is used. 

6) The forcing function is defined by:
 

 (0)

2 2 2 2

t

h h h hP R R Q   

where, 
2

t

hR  is the residual that is restricted to the coarse grid ( 2h ) and  (0)

2 2h hR Q

is the residual evaluated by restricting (0)

2hQ  to the coarse grid from the fine grid. 

7) The residual on the coarse grid is defined as:  (0)

2 2 2 2h h h hR P R Q   
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8) After one or several iterations, the solution on the coarse grid is updated. Then, 

the solution correction on the coarse grid is calculated as :  1

2 2 2

n n

h h hQ Q Q    

9) In order to update the solution on the fine grid ( h ), the solution corrections are 

prolonged to the fine grid as follows:   1 1 (0)

2 2 2

n n h n

h h h h hQ Q I Q Q     

where, n

hQ is the solution before the restriction to the coarse grid and 
2

h

hI is the 

interpolation operator. 

Accuracy of Transfer Operator 

Orders of prolongation and restriction operators should satisfy the following equation in 

order to damp the frequency error (Hemker, 1990): 

 

Res Pro Eqnm m m   (7) 

 

where, Resm ,
Prom and

Eqnm denote the order of restriction, prolongation operator and the 

order of spatial numerical discretization for the system of equations, respectively. A full-

weighting restriction and fourth-order compact interpolation (Lele, 1992) that are used in 

this work will satisfy Eq. (7). 

 

BCR algorithm and GPU implementation 

CUDA architecture and GPU memory hierarchy 

In CUDA architecture, a kernel execution is divided among a batch of concurrent 

threads, which are partitioned in blocks of threads. The blocks are mapped to the stream 

multiprocessors (SM) of the GPU device for execution. The concurrent threads access 

data from different memory resources when executing on the GPU. Each thread within a 

group of blocks has access to the large global memory (Equal to the DRAM of the GPU) 

with high transaction latency. All threads have low latency access to 48KB of shared 

memory for thread communication within a block (CUDA, 2012). The NVIDIA GTX 

480, used in this research, has 1536 MB of frame buffer global memory runs through a 

384-bit bus and delivers 177.4 GB/s of memory bandwidth.  

The parallel Block Cyclic Reduction (BCR) algorithm 

The BCR algorithm is based on divide and conquer strategy. In the first level, the 

primary N N  system of equations is divided into two decoupled / 2 / 2N N  sub 

matrices. The two smaller sub matrices are consecutively divided again in the same way 

until the total number of / 2N sub matrices of size 2 2   are achieved in the last level, 

which can be solved in parallel. In each level of the BCR algorithm, the diagonals 

( , , )L M U  and the right-hand-side ( )D  are calculated by Eq. (8). Accordding to this 

above calculations consist of many small matrix multiplication and inversion operations. 

The basic approach to implement the above matrix operations on the GPU is to use 

different streams for parallel kernel execution (CUDA, 2012). However, this approach is 

bounded by 16 maximum concurrently running streams in CUDA architecture and 

cannot lead to performance improvements in large matrices. In order to benefit from the 

parallel nature of BCR algorithm together with the high computational throughput of the 
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GPU device, single GPU kernels are developed to perform all matrix multiplication and 

inversion operations in parallel.  

 

In both matrix kernels, the sub matrices are first loaded from the global memory to the 

shared memory, which is provided for each block of threads. Then the calculations on the 

sub matrices are obtained and the results are written back to the global memory. The 

number of offloading sub matrices to the shared memory of each block is optimized to 

avoid extra memory allocation than the 48KB limit and achieve the maximum 

performance on GPU. 
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Results 

The double precision numerical results presented in this section demonstrate the accuracy 

and computational efficiency of the multigrid method for inviscid flows. The 

performance of the GPU-based multigrid solver with the implicit scheme is studied for 

two-dimensional circular arc bump. The thickness-to-chord ratio is 10%  based on the 

standard test cases of the GAMM conference (Rizzi and Viviand, 1981). In the case of 

computations on two grid levels and three grid levels, the FMG method is applied to 

provide an initial solution for the fine grid. The CFL number of 0.6 is used on all grids so 

that larger time steps can be used on the coarse grid. Convergence is monitored using 2L

norm of density residual. The performance of computations on GTX480 GPU (Core 

Clock rate: 700 MHz) is compared with a single core of Intel Core i7-920 2.67GHz CPU.  

Multigrid performance 

In first step, the performance of multigrid method for computational grid including 

32 16 cells at free stream Mach number for subsonic and transonic flows using second-

order finite difference method is presented. Figure 3(a) and Fig. 3(b) compares the 

convergence rates between a single grid level, two grid levels and three grid levels 

multigrid with FMG for subsonic and transonic flow. Computations are performed using 

V-cycle procedure. 

 

In the second step, the performance of multigrid method for the fourth-order compact 

method on the same geometery for both subsonic and transonic flows is investigated.  

Figure 4(a) and Fig. 4(b) demonstrate the convergence rates between a single grid level, 

two grid levels and three grid levels multigrid with FMG for subsonic and transonic flow. 

Computations are performed using V-cycle procedure. It is worth mentioning that no 

significant difference between convergence rates of V-cycle and W-cycle computations 

is observed. 
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(a) Subsonic flow M∞=0.5 (b) Transonic flow, M∞=0.675 

Figure 3. Convergence acceleration for the second-order scheme 

  

(a) Subsonic flow, M∞=0.5 (b) Transonic flow, M∞=0.675 

Figure 4. Convergence Acceleration for the fourth-order scheme 

 

In Fig. 5(a) and Fig. 5(b) Mach number distribution of the present study compared to 

(Demirdžić, Lilek, & Perić, 1993). Figure 6(a) and Fig. 6(b) demonstrate the pressure 

contour for subsonic and transonic flow, respectively. 
 

  
(a) Subsonic flow, M∞=0.5 (b) Transonic flow, M∞=0.675 

Figure 5. The Mach number distribution for lower wall of the circular arc bump 
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(a) Subsonic flow, M∞=0.5 (b) Transonic flow, M∞=0.675 

Figure 6. The pressure contours over the circular arc bump 

 

Total performance 

The total performance of the CFD code on the GPU, including the multigrid kernels and 

the BCR linear solver, is studied. Figure 7(a) and Fig. 7(b) show the overall GPU 

speedup of the two-dimensional subsonic and transonic flow test cases compared to the 

CPU platform for the second-order finite difference method. Figure 8(a) and Fig. 8(b) 

compare the solver speedup for the fourth-order compact finite difference method for 

0.5 M  and 0.675 M , respectively. Speedup term here is defined as the run time 

ratio obtained by single grid CPU- solver over the multigrid GPU-solver. 

 

  

 

(a) Subsonic flow, M∞=0.5 (b) Transonic flow, M∞=0.675  

Figure 7. Total speed up for the second-order scheme on GPU  

  

 

(a) Subsonic flow, M∞=0.5 (b) Transonic flow, M∞=0.675  

Figure 8. Total speed up for the fourth-order scheme on GPU  

CONCLUSIONS 

A multigrid scheme is implemented on a two-dimensional Euler solver in order to 

accelerate convergence to steady state. Subsonic and transonic inviscid flows in a 

channel with circular arc bump for both second-order central and fourth-order compact 
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finite-difference methods are investigated as the test cases. The convergence acceleration 

obtained for Fourth-order method is more than convergence acceleration for the second-

order
 
method. Moreover, the higher convergence rate for subsonic flow is observed in 

comparison to transonic flow. Total speedups between 2x–6.2x are achieved for different 

mesh sizes by implementing the GPU-based BCR solver in comparison to computations 

on the CPU platform. 
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