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Abstract

Developing an explicit time stepping scheme to accurately capture the dynamics in elastic
materials is still a challenging problem. In the current study we investigate the accuracy and
the stability of a family of explicit Runge-Kutta methods for the smoothed particle hydrodynam-
ics (SPH) solution of equations in elastodynamics. The SPH method employs a purely mesh-
less Lagrangian numerical technique for spatial discretization of the domain and it avoids many
numerical difficulties related to re-meshing in mesh-based methods such as the finite element
methods. The examined integration methods include the explicit Euler, explicit Runge-Kutta and
explicit Runge-Kutta Chebyshev (RKC) schemes. Numerical results are presented for two test
examples: shock-wave propagation in a one-dimensional problem and the velocity loading on
a two-dimensional elastic plate. It is found that the proposed RKC scheme offers a robust and
accurate approach for solving elastodynamics using SPH techniques.
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Introduction
The Smoothed Particle Hydrodynamics (SPH) method was first developed by Lucy [6], Gingold and
Monaghan [4]. In this method, the continuum domain is discretized into particles carrying the field
variables. These variables are calculated from the contribution of the neighboring particles by means
of a kernel function. The SPH is a truly meshless method based on the transformation of differential
equations into integral ones which are then discretized using a distribution of moving particles. The
SPH method has been traditionally applied to modeling fluid flows. In recent years, there has been
a growing interest in applying SPH method to a wide variety of solid mechanics problems [5]. The
main feature of SPH method is that it is a particle based technique and does not require any under-
lying grid structure to represent the problem geometry. This avoids the difficulties associated with
traditional mesh-based methods (FEM, FVM and BEM), e.g. maintaining the integrity and quality
of the mesh under large deformation. The mesh-free nature of the SPH method makes this method
ideally suited to modeling processes that involve large deformations and discontinuities, such as frac-
ture and fragmentation, metal forming, etc. It has given relatively good results in many applications
in both fluid and solid dynamics.

The emphasis in this work is on the time integration of the resultant system of ordinary differential
equations generated from the SPH space discretization of the transient elastodynamic problem. The



examined integration methods include the explicit Euler, explicit Runge-Kutta and explicit Runge-
Kutta Chebyshev (RKC) schemes. In this paper, the SPH method is first explained, in relation to
the discretization of the governing equations. Thereafter, time stepping techniques are employed to
integrate the semi-discrete problem. After experiments with the different time integration schemes for
a transient problem with known analytical solution, accuracy and efficiency of the different schemes
are discussed. Numerical results are presented for two test examples: shock-wave propagation in a
one-dimensional problem and velocity loading on a two-dimensional elastic plane. It is found that
the proposed RKC scheme offers a robust and accurate approach for solving elastodynamics using
SPH techniques.

SPH Method in Elastodynamics
The governing equation in elastodynamics expresses of the conservation of momentum as follows

Dv
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ρ
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)T is the gradient operator, ρ the density, v the velocity, σ the stress tensor and
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+ v · ∇) is the total derivative. In our case the density is constant in time and therefore no
need to consider the energy equation. The mathematical model for small strains and displacements
will be employed in this study. Thus,
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where the elastic constitutive matrix is given by
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and E is Young’s modulus, ν is Poisson’s ratio. Then we can reformulate the (1a) into another form,
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)
+
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ρ2
∇ρ, (3)

In the SPH method, the continuum domain Ω is discretized into a set of N particles. The field
variables and its spacial gradient can be determined from the contributions from the neighbouring
particles

fi =
N∑
j=1

mj

ρj
fjWij, ∇fi =

N∑
j=1

mj

ρj
fj∇Wij. (4)



where Wij is the smoothing (kernel) function. In the present work, we use the following B-spline
function [7],
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(5)

with h is the smoothing length and R =
|Xi−Xj |

h
.

It is clear that for the particle near boundary, the support domain will lack neighbouring particles.
To overcome this drawback we correct the approximation function using the procedure proposed in
[1]. The correction forms are based on the principle that the smoothing function is normalised in the
support domain
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(6) can be represented into two following forms,
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Note that the second derivative of the kernel (5) is continuous, and the leading truncation error term
isO(h2). The finiteness of the kernel support means that only a limited number of neighbouring par-
ticles play a role in all the sums of conservation equations. This is used to reduce the computational
time by building a link list between particles at each time step.

The artificial viscosity is always applied to reduce the unphysical oscillations and improve the
numerical stability, which can be written as Πij . In this study we choose to apply the most popular
expression of artificial viscosity which is developed by Monaghan [7],

Πij =


−αΠcijφij + βΠφ

2
ij

ρij
, vij · rij < 0,

0, vij · rij ≥ 0

(8)

where we have φij =
hijvij ·rij

|rij |2+0.01h2ij
, cij =

ci+cj
2

, ρij =
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2
, hij = 0.5(hi + hj), rij = ri − rj and

vij = vi − vj .
Apply the SPH discretization into the elastodynamics system, the semi-dicsretized equations can

be reformulated in a compact SPH form
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In practice, involving the difference of velocity between two interactive partices brings more accurate
results than using single neighbouring particle’s velocity. Then we can apply equation (7b) on the
equation (1b),
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where Dij are the entries of the elastic matrix D for plane stress i.e., D = E
(1−ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

.

Strong-stability-preserving explicit Runge-Kutta methods
The solution procedure for equations (9) is completed when a time integration of the semi-discrete
SPH equations is selected. This stage can be handled by any implicit ordinary differential equation
(ODE) solver, since they are computationally without risk by virtue of their accuracy and linear
unconditionally stability. This allows for larger time steps in the integration process. However,
due to the large set of linear system of algebraic equations at each time step, these methods may
be computationally inefficient. As an alternative, we use a class of explicit Runge-Kutta methods.
Applied to the system (9), the SPH discretization can be reformulated in a compact system of ODE
of this form

dU

dt
= F (U) , t ∈ (0, T ], (10)

where U =
[
σxx σyy σxy vx vy

]T and the right-hand side F (U) is defined accordingly to (9).
It should be stressed that, because explicit time stepping schemes evaluate explicitly the right-hand
side of the equation (10), then it has to satisfy a stability condition. This stability criterion can be
reached based on the Courant-Friedrichs-Levy (CFL) condition

c
∆t

∆x
≤ 1, (11)

where c =
√

E
ρ

is the wave speed and ∆x is the initial spacing between two particles. Difficulties
often appear when the spectral radius of the Jacobian of F, ∂F/∂U, has large eigenvalues. This
may give rise to numerical stiffness. Thus, time integration schemes for (10) depend strongly on
the spectral radius ρ (∂F/∂U) and grid refinements, and for these reasons it is preferable that these
schemes have to be either implicit or explicit with large stability regions. In the current work, we
consider the RKC method studied for example in [2, 8, 3]. The RKC method has been designed for
explicit time integration of systems of parabolic equations. To solve (10) the RKC scheme takes the



form

U(0) = Un ,

U(1) = U(0) + µ̃1F
(0)

(12)
U(j) = µjU

(j−1) + νjU
(j−2) + (1− µj − νj)U(0) + µ̃jF

(j−1) + γ̃jF
(0), 2 ≤ j ≤ s ,

Un+1 = U(s) ,

where Un is the solution computed at time step tn, F(j) denotes the term F
(
tn + cj∆t,U

(j)
)

and
U(j) are internal vectors for RKC stages. The coefficients in (12) are available in analytical form
for arbitrary s ≥ 0 from [2, 8]. For convenience of the reader we include the formulae for these
coefficients. Consider the Chebyshev polynomial of the first kind of degree j

Tj(z) = cos(jarccosz), −1 ≤ z ≤ 1 .

Then
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It should be pointed out that two criteria have been taken into consideration for the calculation of the
above coefficients namely, (i) the real stability boundary, β(s), has to be as large as possible to obtain
good stability properties for parabolic equations, and (ii) the application of the method with arbitrary
number of stages should not damage the convergence properties, that is, the accumulation of local
errors does not grow without bound. Observe that the number of stages s in our SPH method and the
conventional RKC scheme varies with ∆t such that, see [8],

s = 1 +

[[√
1 +

c∆t

0.653∆x

]]
, (13)

where [[ x ]] denotes the integer part of x and c =
√

E
ρ

is the wave speed.

Numerical results
We then examine the performance of the proposed time stepping schemes for SPH method for a
class of elastic problems in one and two dimensions. In the first example we solve the problem of
propagation of a shock wave on a one dimensional elastic magnesium bar and the second example
solve a large deformation problem in two dimensional elastic magnesium plate.



One-dimensional shock-wave propagation
In this example we solve the problem of propagation of a shock wave on one-dimensional magnesium
bar. The length of the bar L = 1m with material properties of ρ = 1738 kg/m3 and the Young’s
modulus E = 45 × 109 Pa. Initial the bar is at rest with v = 0 and σ = 0. The velocity at
the right end of the bar is fixed (v = 0) and we apply a compression stress on the left boundary
σ0 = 8.8436 × 106 Pa. The analytical velocity of the shock wave in this problem could be easily
calculated by v0 = σ0/

√
Eρ = 1 m/s. The wave will propagate through the bar with the wave

speed c =
√
E/ρ = 5.0884 × 103 m/s. When the wave arrives the fixed right end of the bar, the

stress at this point will double to become 17.6872 × 106 Pa. In Figure 1(a), 1(b), 1(c) and 1(d), we

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Numerical results for the shock-wave propagation problem.

present the velocity and the stress along the bar at time t = 1.2 × 10−3 s and the time evolution
of velocity and stress at the mid point of the bar (x = L/2), obtained using the considered time
stepping schemes and 251 particles. It is evident from these results that the RKC scheme with 3
stages produces more stable and accurate results that the other considered schemes. As we known,
the stability will decrease while increasing the value of CFL in normal time stepping schemes, like
RK4 scheme shown on Figure 1(e). However Figure 1(f) shows that the RKC scheme can still
present stable results with larger value of CFL in condition with increasing number of stages. To
further examine the convergency of RKC scheme applied in SPH method, we then apply the RKC
scheme in more number of particles, as shown on Figure 1(g) and 1(h). The error rates of using the
SPH method for solving Example 1 with different time schemes are shown on the Table 1, the error
rate is obtained from the equation,

error1 =

∑
|uSPH − uexact|∑
|uexact|

.

Two-dimensional elastic plane
As a second example we consider a two-dimensional version of the previous example solved in the
computational domain shown in Figure 2. The material properties of plane are ρ = 2000 kg/m3,



Table 1: Error rate of using the SPH method for solving Example 1 with different time schemes.

CFL = 0.8 CFL=1.0 CFL=2.5

# nodes Euler RK4 RKC Euler RK4 RKC Euler RK4 RKC
251 0.2417 0.1866 0.1661 - 0.2313 0.1655 - - 0.1655
501 0.1676 0.1306 0.1165 - 0.1616 0.1165 - - 0.116
1001 0.1157 0.092 0.082 - 0.1135 0.0821 - - 0.0815
2001 0.0747 0.0651 0.0579 - 0.0802 0.0579 - - 0.0574

the Youngs modulus E = 80 × 106 Pa and the Poisson ratio ν = 1/3. Fixed boundary conditions
are applied on the upper and right sides of the plane, whereas, the velocity on the lowest left circular
boundary is given as

v(t) =

5 m/s, if t ≤ 1.8× 10−3 s,

0 m/s, otherwise.

Based on the observations drawn from the previous example, we present numerical results obtained
using the RKC scheme. We also examine the performance of our SPH method for three different node
distributions exhibited in Figure 2. The corresponding node statistics along with the time steps used
for each nodal distribution are summarized in Table 2. In this table we also include the minimum
and maximum values of the principal stress obtained for the considered nodal distributions and a
reference solution obtained on a very fine SHP nodal distribution.

Figure 2: Computational domain and node collocations for Example 2.

Table 2: Nodal statistics and results for the principal stresses obtained using the SPH method for
solving Example 2.

t = 0.0018 s t = 0.003 s t = 0.0048 s

# nodes ∆t maxσp minσp maxσp minσp maxσp minσp
Reference 24170 1.25e-5 3.01e+6 0 1.87e+6 -1.26e+5 2.86e+6 -1.50e+6
Equal radial 2446 1.20e-4 2.95e+6 0 1.96e+6 -2.60e+5 2.96e+6 -1.96e+6
Uniform 2423 1.20e-4 3.23e+6 0 1.93e+6 -2.83e+5 2.64e+6 -3.83e+5
Radial 2376 1.19e-4 2.99e+6 0 1.64e+6 -1.21e+5 2.72e+6 -3.14e+5



t = 0.0018 s t = 0.003 s t = 0.0048 s

Figure 3: Stress distributions and velocity fields obtained for different node collocations and at three
different simulation times. Unifrom distribution (first row), radial distribution (second row) and
equally radial distribution (third row).

In Figure 3 we present the stress distributions and velocity fields obtained for different node col-
locations and at three different simulation times namely t = 0.0018 s, t = 0.003 s and t = 0.0048 s.
At early simulation times, a shock wave is generated and propagates along the main diagonal in the
computational domain. Reflections from fixed boundaries in the domain are also captured by the SPH
method for all the considered nodal distributions. The reflection features are more visible in the veloc-
ity fields than the stress distributions at t = 0.0048 s. From the presented results it is evident that the
nodal distribution in the considered SPH method affects quantitatively and qualitatively the simulated
results. The artificial viscosity has been considered in all the analysis of example 2. It seems that, for
the considered material properties and the boundary conditions,at the early stage t = 0.0018 s, the
SPH method using the radial and equally radial nodal distributions produces more accurate results
in term of both stress and velocity fields, because the distances between two nearest neighbouring
particles near the curve boundary are similar in these two distributions, which bring more reasonable
results. When the wave propagates to the fixed boundary and reflects (t = 0.0048 s), the uniform
distribution brings smoother results than others in terms of both stress and velocity, because the the
distances between two nearest neighbouring particles near the fixed boundary are similar in uniform
distribution, which can brings more accurate results.
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