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Abstract 
A method coupling the scaled boundary finite element method (SBFEM) and the finite element 
method (FEM) is developed for linear elastic fracture modelling. A very simple but effective 
remeshing procedure based on the finite element mesh only is used to accommodate crack 
propagation. The crack-tip region is modelled by one SBFE subdomain whose semi-analytical 
displacement solutions are used to extract accurate stress intensity factors. The SBFE subdomain 
boundary is coupled with the surrounding FE mesh boundary through virtual interfaces so that the 
nodal discretisations of the two boundaries can be different. Two plane problems are modelled to 
validate the new method.  

Keywords: scaled boundary finite element method, non-matching mesh, stress intensity factors, 
crack propagation, remeshing procedure, linear elastic fracture mechanics.  

1. Introduction 

The FEM is the most popular numerical method in simulating crack propagation because of the 
high generality and flexibility of finite elements in modelling structures with complex geometries, 
various boundaries and loading conditions, and complicated cracking patterns. The scaled boundary 
finite element method (SBFEM) (Song and Wolf 1997) is a semi-analytical method that is very 
efficient in modelling problems with discontinuities and singularities. This study proposes a non-
matching SBFEM-FEM coupled method to simulate crack propagation problems based on the linear 
elastic fracture mechanics (LEFM). In this method, the SBFE subdomain boundary is coupled with 
the surrounding FE mesh boundary through virtual interfaces so that the nodal discretisations of the 
two boundaries can be different and only one SBFE subdomain is needed at a crack tip.  

2. The Non-matching SBFEM-FEM Coupled method 

2.1. The Scaled Boundary Finite Element Method 
Fig. 1 illustrates a two-dimensional (2D) SBFEM subdomain. The normalised radial coordinate ξ 
and circumferential coordinate s form a local coordinate system used in the subdomain. They are 
related to the Cartesian coordinates (x, y) by the transformation Eqs. (Song and Wolf 1997) 

 0 0( ) ( )s sx x ξx s y y ξy s= + = +  (1) 

The displacement vector at any point (ξ, s) in a subdomain can be calculated as 
 ( , ) ( , )b bs sξ ξ=u N u  (2) 

where ub is the nodal displacement vector of the subdomain, and the shape function matrix Nb is 
(Deeks and Wolf 2002) 

 1( , ) ( )b bs s λξ ξ − =  N N Φ Φ  (3) 

where Nb(s) is the one-dimensional shape function matrix as in FEM, [λ] = diag(λ1, λ2, ...,  λn) and Φ 
= {ϕ1, ϕ2, …, ϕn} are the subset of positive eigenvalues and modal displacements obtained from 
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solving an eigenvalue problem (Deeks and Wolf 2002), and n is the degrees of freedom (DOFs) of 
the subdomain. 

The stress field σ(ξ, s) in a subdomain is 

 ( 1) ( 1)

1 1
( , ) ( ) ( )i i

n n

i i i i i
i i

s s c s cλ λξ λξ ξ− −

= =

   = +      
∑ ∑1 2σ DB φ DB φ  (4) 

where ci are constants dependent on boundary conditions, D is the elastic matrix, and B1(s) and 
B2(s) are strain-displacement matrices (Deeks and Wolf 2002).  

The stiffness matrix of the subdomain with respect to the boundary DOFs is  
 T10

b EΦΦEK += −1][λ  (5) 
where E0 and E1 are matrices dependent on the geometry and material properties of the subdomain 
only. 

 

 
  

 
 
 
 
 
 
 
 
 

Fig. 1. A subdomain in SBFEM 
2.2. Coupling SBFEM and FEM with non-matching meshes  
Fig. 2a shows a domain Ω with a crack, modelled by a FE part ΩFE away from the crack tip and an 
SBFE subdomain ΩSB surrounding the crack tip. Fig. 2b shows the virtual interface of zero in-plane 
thickness (the dashed line), which coincides with the defining curve S (with ξ=1) of the SBFE 
subdomain ΩSB.  

For any point with circumferential coordinate s on the virtual interface S, there is a point 1 on the 
FE boundary and a point 2 on the SBFE boundary, possessing the same coordinates (plotted as 
white triangles in Fig. 2b). The displacement vector d1(s) of point 1 in the global coordinate system 
can be calculated by 

 1( ) ( )f fs s=d N u  (6) 
where uf  is the nodal displacement vector of the finite element f in which the point 1 is located, and 
Nf(s) is the shape function matrix at point 1 in the finite element f, whose members are functions of 
the two local parametric coordinates of point 1 in the finite element f. The displacement vector d2(s) 
of point 2 can be calculated by Eq. (2) as 

 2 ( ) ( )b bs s=d N u  (7) 
where Nb(s) are functions of circumferential coordinate s only as ξ=1 on the defining curve S. 

To simplify derivation, Eqs. (6) and (7) can be rewritten by expanding uf, ub, Nf(s) and Nb(s) to the 
global DOFs as 

 1 1( ) ( )s s=d N u  (8) 
 2 2( ) ( )s s=d N u  (9) 
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where u is the nodal displacement vector of the whole model with N number of DOFs, and N1(s) 
and N2(s) are now both 2×N matrices.  

The relative displacements of points 1 and 2, with one component along the virtual interface and 
another normal to it, are  

 1 2( ) ( )( ( ) ( ))s s s s= −d L d d  (10) 
where 

 
( ) ( )

( )
( ) ( )

cos s -sin s
s

sin s cos s
θ θ
θ θ

 
=  
 

L  (11) 

is the coordinate transformation matrix and θ(s) is the inclination angle of the virtual interface at the 
point and measured clockwise from s direction to the positive x axis (see Fig. 2b).  

Assuming that the relative displacements are sustained by two virtual springs with stiffness 
coefficients ks along the virtual interface and kn normal to it, the force vector on unit length 
transferred by the springs is  

 ( ) ( )cs s=P D d  (12) 
with  

 s
c

n

k
k

 
=  
 

D  (13) 

The introduction of the virtual interface and the virtual springs leads to artificial gaps or 
penetrations along the shared boundary, and spurious potential energy which should be minimised. 
The potential energy on the whole virtual interface is 

 1 ( ) ( )
2S

s s dsΠ = ∫ P d  (14) 

Substituting Eqs. (10) to (12) into Eq. (14) and using Eqs. (8) and (9) results in 

             T T T T T
1 2 1 2

1 1( ) ( ) ( ( ) ( )) ( ) ( )( ( ) ( ))
2 2c cS S

s s ds s s s s s s dsΠ = = − −∫ ∫d D d u N N L D L N N u  (15) 

Calculating variation of Eq. (15) with respect to u leads to 

T T T T T
1 1 2 2 1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c c c cS

s s s s s s s s s s s s dsδ δ  Π = + − − ⋅ ∫u N D N N D N N D N N D N u (16) 

where      
 T( ) ( ) ( )c cs s s=D L D L  (17) 

Thus the contribution of the virtual interface to the system stiffness matrix is (Zienkiewicz et al. 
2005)  
       T T T T

1 1 2 2 1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c c c cS
s s s s s s s s s s s ds = + − − ∫cK N D N N D N N D N N D N     (18)  

The system stiffness matrix is then obtained by assembling Eq. (5), Eq. (18) and the stiffness 
matrices of all the finite elements.  

The spring stiffness coefficients ks and kn play a vital role in the accuracy of this coupling procedure. 
Too high values may lead to ill-posedness of the system equations and too low values cannot ensure 
displacement continuity across the virtual interface. The following is proposed in (Qiang et al. 2000) 
as a guideline 

 (1 )
(1 )(1 2 )s n

c vk k k E
b v v

−
= = =

+ −
 (19) 

where E and v are the Young’s modulus and Poisson’s ratio, b is the characteristic size of elements, 
and c is taken as 10~100 from the experience in (Qiang et al. 2000) . 
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(a) The global mesh (b) The local mesh 

Fig. 2. Coupling SBFE and FE meshes 

3. Numerical examples 

When a crack is judged to propagate, a very simple, local remeshing procedure similar to the one in 
(Xie and Gerstle 1995) is used to accommodate its propagation. The crack propagation direction is 
calculated by the maximum circumferential stress theory in this study (Erdogan and Sih 1963). The 
SIFs are extracted directly from the displacement solutions (Chidgzey and Deeks 2005). Two 
problems are modelled to validate the developed method and demonstrate its capability. 

3.1. An edge-cracked plate under mode-I fracture  
The first example is an edge-cracked plate subjected to a far field unit stress (σ=1) applied on the 
top and bottom. The geometry, boundary and loading conditions are shown in Fig. 3a. The exact 
solution of the mode-I SIF in this example is KIe= 9.37 (Ingraffea et al. 1984).  

To investigate the effects of the coupling parameter k in Eq. (19), structured FE meshes are 
modelled. Fig. 3b shows a mesh with 20×40 4-noded quadrilateral elements. The FE-SBFE coupled 
mesh is shown in Fig. 3c, with the detailed region at the crack tip highlighted in Fig. 3d.  

 

 

 

 

 

   

 

 

(a) Geometry and 
loading conditions (b) FE mesh (c) FE-SBFE 
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(d) detailed mesh at the 

crack-tip 
Fig. 3. Example 1: a plate with an edge crack 
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Fig. 4 plots the errors of KI from three meshes as the virtual spring stiffness coefficient k varies. 
It is reconfirmed that too high or too low values of k lead to unsatisfactory accuracy. For this 
example, it is found that k=102E~1010E results in lower than 1% error in KI. From the vertical 
displacement contours shown in Fig. 5 (20×40 mesh), the use of virtual interface between the FE 
and SBFE meshes does not affect the displacement continuity. k=100E is used in all the following 
examples, corresponding to c=26 in Eq. (19).  
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(b) Local at crack tip 

Fig. 4. Effects of virtual spring stiffness 
coefficient k on KI 

Fig. 5. Vertical displacement contours from 
structured 20×40 mesh (×10-11) 

Table 1 compares the relative error of KI for five structured meshes using the FEM, the XFEM, 
the hybrid FE-SBFE method (Ooi and Yang 2010) and the present method. The results are also 
shown in Fig. 6, which indicate the much higher accuracy of the present method and the previous 
FE-SBFE hybrid method (Ooi and Yang 2010) over FEM and XFEM.  

Table 1. Errors of KI for the edge-cracked plate under mode-I loading 

FEM  XFEM 
(Ooi and Yang 2010)  Hybrid method  

(Ooi and Yang 2010)  Present method 
No. 

Elements 
No. 

DOF 
Error 
(KI) 

 No. 
Elements 

No. 
DOF 

Error 
(KI) 

 No. 
Elements 

No. 
DOF 

Error 
(KI) 

 No. 
Elements 

No. 
DOF 

Error 
(KI) 

4 × 8 94 25.0%  5 × 7 136 18.5%  4 × 8 222 7.4%  4 × 8 222 7.2% 
8 × 16 314 14.3%  9 × 15 368 8.4%  8 × 16 442 3.5%  8 × 16 442 3.6% 

16 × 32 1138 7.6%  17 × 31 1216 3.7%  16 × 32 1266 1.4%  16 × 32 1266 1.7% 
20 × 40 1742 4.2%  21 × 39 1832 2.9%  20 × 40 1870 1.0%  20 × 40 1870 1.3% 
32 × 64 4322 4.0%  33 × 63 4448 1.7%  32 × 64 4450 0.5%  32 × 64 4450 0.8% 

The influence of the number of DOFs used to model the SBFE subdomain is shown in Fig. 7. It 
can be seen that using 30 nodes can achieve less than 1% error (32×64 elements). 
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3.2. A double-edge notched plate with two holes  
The second example is a plate with two holes and two edge cracks subjected to a uniform tensile 

test, shown in Fig. 8.  Fig. 9 and   Fig. 10 show two final FE-SBFE coupled meshes, with 1722 and 

6208 DOFs, respectively. The predicted crack paths using the two meshes are very close. Fig. 11 

compares the crack paths predicted by the present method with those obtained by the FEM in 

(Bouchard et al. 2003) and the polygon SBFEM in (Ooi et al. 2012).  

Fig. 8. A plate with two holes and two edge 
cracks (unit: mm) 

 

 
 

Fig. 9. Mesh 1, 772 finite elements, 861 
nodes (displacement scale=50) 

 

  Fig. 10. Mesh 1, 772 finite elements, 861 
nodes (displacement scale=50) 

 Non-matching method(Mesh 1)
 Non-matching method(Mesh 2)
 Ooi et al. (2012)
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Fig. 11. Comparison of crack paths 

4. Conclusions 

A non-matching SBFEM-FEM coupled method has been developed for modelling LEFM-based 
crack propagation. The stress singularities are accurately captured by crack-tip SBFE subdomains, 
making the FE-based remeshing procedure as simple as possible. The use of non-matching FE and 
SBFE meshes, whose displacement continuity is ensured by assigning sufficiently high stiffness on 
the virtual interface, makes remeshing even more flexible than other methods. The accuracy and 
effectiveness of the developed method has been demonstrated by modelling two fracture problems. 
It also paves the way for further development, such as the overlapping methods (Massing et al. 2012; 
Okada et al. 2005) in which the cracked subdomain floats on the global FE mesh, namely, the two 
meshes are completely independent. This will offer the highest flexibility in remeshing.  
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