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Abstract 

Ice accretion is a phenomenon where super-cooled water droplets impinge and accrete on a body. It 

occurs frequently on airplanes, windmills and conductor cables. In particular, when ice layer is 

formed on an aircraft wing, it affects on the aerodynamic performance by increasing drag and 

decreasing lift, and it may cause a serious accident. On a jet engine, ice accretion disturbs the inlet 

flow, and separated ice pieces can damage to the compressor and the casing, which leads to the severe 

performance degradation. There have been several accidents due to the ice accretion. Therefore, the 

estimation of ice accretion in the design phase is necessary to avoid accidents. The research on ice 

accretion phenomena has been conducted since early 1990's. The first icing simulation model was 

developed by Messinger in 1953. This model has been widely used in simulating ice accretion 

phenomena. Recently, Extended Messinger model was developed by Ozgen and Canibek in 2009. 

This model is more sensitive than Original Messinger model in suitably estimating the runback mass. 

The predictive performance for the runback mass has a huge influence on ice accretion phenomena 

in glaze ice condition. In this study, we conducted the validation of these icing models in two- and 

three-dimensional field. Finally, we indicated Extended Messinger model is more superior to Original 

Messinger model in simulating glaze icing. 
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Introduction 

Ice accretion is a phenomenon where super-cooled water droplets impinge and accrete on a body. It 

has two types of ice shape. One is called ‘rime ice’ which is generated at very low temperature (less 

than -10 °C). On the rime ice condition, droplets in the air instantly freeze at the impingement point. 

The other is called ‘glaze ice’ which is generated at -10 to 0 °C. On the glaze ice condition, droplets 

gradually freeze with running along a body (so-called runback). This phenomenon is considerably 

important in simulating the glaze icing. 

 

When ice layer is formed on an aircraft wing, it affects on the performance by increasing drag and 

reducing lift, and it may cause a serious accident. On a jet engine, ice accretion disturbs the inlet flow, 

and separated ice pieces can damage to the compressor and the casing, which leads to the severe 

performance degradation. There have been several instances of accidents due to ice accretion. 

Obviously, it is essential that the mechanisms of ice accretion are understood. The estimation of ice 

accretion is necessary to avoid accidents and useful to reduce the cost and the design time in the 

design phase of aircrafts and jet engines. However, the experimental investigations are very difficult, 

because it is not easy to set ice accretion conditions repeatedly in a wind tunnel. Therefore, it is 

expected computational fluid dynamics (CFD) will be a useful way to predict ice accretion 

phenomenon. CFD research of ice accretion phenomena has widely been conducted by agencies and 

universities, such as NASA [1], ONERA [2] and so on. 
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The first icing simulation model was developed by Messinger in 1953 [3]. This Original Messinger 

model has been widely used in the major research institution such as NASA, DRA and ONERA. The 

results predicted with the Original Messinger model is in good agreement with the experimental data 

in rime ice conditions. However, in glaze ice conditions, the predictive performance of the Original 

Messinger model is low, because the mass of the runback is underestimated. Therefore, the user 

specially modified the Original Messinger model in simulating glaze icing phenomena. Recently, 

Extended Messinger model was developed by Ozgen and Canibek in 2009. It is expected that the 

Extended Messinger model is more sensitive to glaze ice conditions than Original Messinger model, 

because it includes phase change condition from rime ice to glaze ice. However, the extended 

Messinger model has not been extensively validated yet. 

 

In this study, we conducted the validation of these icing models two- and three-dimensional field. In 

the two-dimensional validation, we adopted the NACA 0012 airfoil because a lot of experimental 

data are available. In the three-dimensional validation, we adopted a fan rotor and FEGVs, because 

these components are easy to accrete ice. Finally, we indicated Extended Messinger model is more 

superior to Original Messinger model in simulating glaze icing. 

Numerical Procedure 

Our icing simulation code is composed of iterative computations for fluid motion, droplet trajectory, 

thermodynamics and grid modification. Below each computational detail is explained. 

Flow Field 

The flow field is assumed to be three-dimensional, compressible and turbulent. The governing 

equations are Favre-averaged continuity, Navier-Stokes and energy equations. Coriolis force and 

centrifugal force are added as body forces. The Kato-Launder k- turbulence model (Kato and 

Launder, [4]) is applied to estimate turbulence. The governing equations are discretized using second-

order upwind TVD scheme (Yee and Harten, [5]) for the inviscid terms, second-order central 

difference scheme for the viscous ones, and LU-ADI scheme (Fujii and Obayashi, [6]) for the time 

integration. 

Droplet Trajectory 

Droplet trajectory calculation based on a Lagrangian approach is performed to obtain the droplet 

collection efficiency on a body. The calculation uses the following assumptions: 

 

1. Droplet is spherical. 

2. Droplet is sufficiently small, and thus it does not break up. 

3. Forces acting on the droplet are drag, centrifugal force and Coriolis force. 

4. Droplets do not interact with each other. 

5. Droplets do not affect on the flow field (one-way coupling). 

6. Initial droplet velocity is equal to the gas velocity at the release point. 

 

The equation of droplet motion is 
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where t is the time, Ur is the relative velocity between the gas and the droplet, dd is the droplet 

diameter, and f and d are the gas and the droplet density. The second term on the RHS represents 
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the centrifugal force and Coriolis force, where  is the rotational speed, and rd is the radial position 

of the droplet. The drag coefficient CD is expressed as:  

  687.0
Re15.01

Re

24
d

d

DC   (2) 

where Red is the Reynolds number of the droplet based on the diameter and the relative velocity 

between the gas and the droplet. 

 

The droplet trajectory calculation is conducted to obtain the collection efficiency. The collection 

efficiency  is followed as: 
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where Ain is the droplet inlet area, Uin is the droplet inlet velocity, LWC is the liquid water content, 

Nimp is the droplet impingement number, Nin is the droplet inlet number and Aimp is the droplet 

impingement area. The collection efficiency is one of the key parameters of the icing simulation. 

Original Messinger Model 

The Original Messinger model was developed by Messinger in 1953. This model is based on the mass 

and energy balance in a control volume. The governing equations is followed as: 

 outseacinim mmmmm  ,  (4) 

 conoutseacfriairinim QQQQQQQQ  ,  (5) 

where mim, min, mac, mout and me,s are the mass of impingement , runback-in, accretion, evaporating 

(or sublimating) and runback-out, respectively; Qim, Qin, Qair, Qfri, Qac, Qe,s, Qout and Qcon are the 

energy of impingement, runback-in, air, friction, accretion, evaporating (or sublimating), runback-

out and convection. The freezing rate f can be derived from Eqs. (4) and (5).  
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    seinimout mmmfm ,1   (7) 

if f = 1, all mass in the control volume accretes, on the other hand, if f = 0, all mass in the control 

volume runbacks to the next cell. 

Extended Messinger Model 

Original Messinger model has a problem in the predictive performance of the runback mass, because 

the phase change from rime ice to glaze ice is instant. To get over this problem, Extended Messinger 

model was developed by Orgen and Canibak in 2009 [7]. This model is based on the Stefan problem, 

which is a standard method of the phase change problem. The governing equations are expressed as: 
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where Eqs. (8) and (9) are the energy equations in the ice and water layer respectively, Eq. (10) is the 

mass conservation equation and Eq. (11) is the phase change condition at the ice/water interface. In 

these equations, Ti and Tw are the temperatures of ice and water; Bi and Bw are the thicknesses of ice 

and water layers; ki and kw are the thermal conductivities of ice and water; Cpi and Cpw are the specific 

heats of ice and water; mim, min and me,s are impinging, runback and evaporating (or sublimating) 

water mass flow rates for a control volume, respectively; i and w are the density of ice and water; 

LF denotes the latent heat of solidification of water. Ice density is assumed to have two different 

values for rime ice r and glaze ice g. The coordinate h is normal to the wall or ice surface. 

Two-dimensional validation 

Computational Target and Grid 

We adopted a NACA 0012 airfoil in the two-dimensional validation, because a lot of experimental 

data are available in literatures. In this study, the overset grid method is applied to clarify the icing 

area around the leading edge, where it is easy to occur icing phenomena. The sub grid resolution is 

important for icing simulation. We checked relatively grid for the icing simulation by three type sub 

grids; the coarse grid resolution is 81 x 21, the medium grid resolution is 201 x 51 and the fine grid 

resolution is 301 x 81. The coarse grid has a margin of error in the icing limit point. Therefore, we 

adopted the medium grid in this study. The number of grid point in the main grid is 15,691 and that 

in the sub grid point is 10,251. The computational domain is 20 chord × 20 chord. 

Computational Condition 

The computational condition is listed in Table 1. The LWC means the liquid water content, and the 

MVD is the median volume diameter of droplets. The number of validation cases is six. The number 

of inlet droplets is 1,000,000.The boundary conditions are followed as; in the inlet boundary, the flow 

angle, the volume flow rate and the total temperature are fixed and the Mach number is extrapolated ; 

in the outlet boundary, the static pressure is fixed and the others are extrapolated; in the wall boundary, 

no-slip, adiabatic and wall function conditions are applied. Under the these conditions, we compared 

Original Messinger model with Extended Messinger model in the two-dimensional validation. 

Table 1. Computational Condition of 2D Validation 

 
Chord 

[m] 

Angle of 

Attack 

[deg.] 

Velocity 

[m/s] 

Static 

Temperature 

[˚C] 

Static 

Pressure 

[kPa] 

LWC 

[g/m3] 

MVD 

[m] 

Exposure 

Time 

[s] 

Run 1 0.530 4.0 58.10 -27.8 95.61 1.30 20.0 480.0 

Run 2 0.530 4.0 58.10 -19.8 95.61 1.30 20.0 480.0 

Run 3 0.530 4.0 58.10 -13.9 95.61 1.30 20.0 480.0 

Run 4 0.530 4.0 58.10 -6.7 95.61 1.30 20.0 480.0 

Run 5 0.530 4.0 58.10 -3.9 95.61 1.30 20.0 480.0 

Run 6 0.530 4.0 58.10 -2.8 95.61 1.30 20.0 480.0 
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Result and Discussion 

We validated our icing simulation code by use of the NASA, DRA and ONERA simulation data and 

the experimental data [8]. These simulations were conducted by Original Messinger model. The ice 

shapes are seen in Fig. 1; (a)-(c) are under the rime ice condition, (d)-(e) are under the glaze ice 

condition. In the rime ice condition, the noticeable difference of the predictive performance between 

Original Messinger model and Extended Messinger model does not appear. This is why the runback 

phenomenon does not occur in the rime ice condition. On the other hand, there is considerable 

disagreement in the glaze ice condition. Extended Messinger model gives the results closer to the 

experimental data than Original Messinger model, because it is sensitive to the runback mass. 

However, the simulation results of NASA, DRA and ONERA can reproduce the glaze icing even if 

they use Original Messinger model. The reason why our icing simulation code of Original Messinger 

model is not modified unlike their icing models. Therefore, Original Messinger model need to be 

modified when simulate the glaze icing. 

Three-dimensional validation 

Computational Target and Grid 

We validated our icing simulation code by use of a jet engine. The icing components of jet engine are 

the rotor fan, FEGV (fan exit guide vane), nose cone, splitter and low pressure compressor. In this 

study, we focused on a fan blade and FEGV, because these are more accreted ice area. The jet engine 

used in this study has twenty-four rotor blades and sixty stator vanes. For simplicity, only one rotor 

blade and two stator vanes are simulated, assuming the geometrical periodicity. The computational 

grid based on an overset grid method and a multi block method is exhibited in Fig. 2; (a) is the main 
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Figure 1. Icing Shape of 2D Validation 
(d) Run 4 (e) Run 5 (f) Run 6 

(a) Run 1 (b) Run 2 (c) Run 3 
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grid for the passage, (b) is the sub grid around the blade. The total number of the grid points is about 

2.8 million. 

 

Computational Condition 

Computational conditions in this study are summarized in Table 2. We set three cases with different 

total temperature. In all cases, the mass flow rates are same. The droplet trajectory simulations are 

conducted for 1,000,000 droplets randomly and spatially distributed at the computational upstream 

boundary. The initial droplet velocity is equal to the local gas velocity. Total pressure, total 

temperature and flow angle are imposed, and Mach number is extrapolated at the upstream inflow 

boundary. The inflow turbulent kinetic energy is assumed by the 0.1 % turbulence of the free stream. 

Adiabatic, no slip and wall function boundary conditions are prescribed on the stationary and rotating 

surfaces. The exit static pressure is specified. 

Result and Discussion 

Fig. 3 shows the static temperature distribution at the rotor midspan, which is a pitch-averaged. 

Around the leading edge of the rotor suction side, the static temperature is considerably low (about 

200 K, Run 1) due to the high Mach number region. Even in the high temperature region such as the 

rotor wake, the stagnation point and the pressure surface on the FEGV, the temperature is below the 

freezing point. Therefore, ice accretion can occur if the super-cooled droplet impinges on the blade 

surface. 

 

Fig. 4 indicates the collection efficiency in Run 3. A lot of droplets impinge on the rotor suction side, 

particularly, at the hub side. There are no impingement droplets on the rotor suction side. Some 

droplets impinge on the pressure side of the FEGV. Other simulation cases have a same tendency. 

 

Finally, we show numerical results of the ice accretion. Ice thickness distributions are exhibited in 

Fig. 5. These figures are for the suction side of the rotor fan, because this is the thickest icing area. In 

all Extended Messinger model cases, icing area expanded to the tip side due to the centrifugal force. 

(a) Main Grid 

Figure 2. Computational Grid of 3D Validation 
(b) Sub Grid 

Table 2. Computational Condition of 3D Validation 

 

Rotational 

Speed 

[rpm] 

Mach 

Number 

Total 

Pressure 

[MPa] 

Total 

Temperature 

[K] 

LWC 

[g/m3] 

MVD 

[m] 

Exposure 

Time 

[s] 

Run 1 4291.0 0.44 0.1013 233.15 1.00 20.0 3.0 

Run 2 4291.0 0.44 0.1013 243.15 1.00 20.0 3.0 

Run 3 4291.0 0.44 0.1013 253.15 1.00 20.0 3.0 
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This tendency cannot be confirmed by use of Original Messinger model. This is caused by the 

predictive performance of the runback water. In the case of Extended Messinger model, the higher 

inlet temperature becomes, the more the runback mass becomes and the larger the icing area is. The 

ice volumes of all computational conditions are summarized in Fig. 6. In the low inlet temperature 

case, the icing models make no difference of the ice volume. However, in the high inlet temperature 

case, the difference between both icing models can be confirmed on the rotor fan icing. On the other 

hand, the icing on the FEGV is little distinction, because the runback hardly occur at the FEGV. 

Therefore, we recommend Extended Messinger model in simulating the ice accretion, because this 

model can reproduce runback phenomena in glaze ice conditions. 

Conclusion 

We validated Original Messinger model and Extended Messinger model. The knowledge obtained in 

this study is described below: 

(1) In two dimensional validation, the icing model makes no difference on the icing phenomenon in 

the rime ice condition. 

(2) In two dimensional validation, Extended Messinger model is better agreement with the 

experimental data due to the higher predictive performance of the runback mass than Original 

Messinger model. 

(3) In three dimensional validation, there is no difference between Original Messinger model and 

Extended Messinger model in low inlet temperature case. 

(4) In three dimensional validation, Extended Messinger model can reproduce the span direction 

wider icing area in the spanwise direction on the rotor fan due to the centrifugal force in high 

inlet temperature case. 

Figure 3. Static Temperature at Rotor Midspan Figure 4. Collection Efficiency 

(a) Run 1 

(b) Run 2 

(c) Run 3 
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(5) We recommend Extended Messinger model in simulating the icing phenomenon, because this 

model is superior to Original Messinger model in terms of the predictive performance of the 

runback mass. 
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Figure 5. Ice Thickness at Suction Side of Rotor Fan 

(a) Run 1 (b) Run 2 (c) Run 3 
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