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Abstract 
In computational fluid dynamics, traditional methods show low rate of convergence 
on low speed flow, while lattice Boltzmann method performed well on it. In this 
report, we use lattice Boltzmann method to simulate cylinder flow, which cylinders 
are in many shapes. These results will be important to further study on control of 
cylinder flow. 
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Introduction 

Lattice Boltzmann method (LBM) has been widely used in computational fluid 
dynamics (CFD), different from other traditional methods, which need to solve 
Jacobian matrix, LBM solves Boltzmann method with single variable particle 
distribution function ( )tf ,,ξx  instead of Navier-Stokes equations. When simulating 
low speed flow, traditional methods show low rate of convergence. LBM is explicit 
scheme, which can solve equations fast. Normally, LBM uses Cartesian coordinate. 
When treating with curved boundaries, lattice will be broken into different parts. It is 
hard to describe the curved boundaries. At very first, A.J.C.Ladd (1994) suggests to 
use Link Bounce-Back scheme to treat the curved boundaries, but this treatment will 
change the curved boundaries into “coarse lattice boundary”. Later, O.Flilppova and 
D.Hänel (1998) propose a new boundary treatment for curved boundaries. But the 
stability is not so good. Then R.Mei et al. (1999) improved its stability, but when 
treating with low Reynolds flow, the stability is still not enough. In 2002, Z.L.Guo et 
al. (2002) proposed an extrapolation method for curved boundaries. Lately, Z.D. 
Wang et al. (2013) proposed a new extrapolation treatment, which improve the 
accuracy and stability in low Reynolds flow. 

Governing Equation 

Lattice Boltzmann method solves the following discretization equation: 

( ) ( ) ( ) ( )[ ]txftxftxftttcxf i
eq

iiii ,,,, ααααα ωδδ −−=++                          （1） 

where f  is the density distribution function of particles, αic  is the discretized 
velocities and α  represents Cartesian coordinate. We simulate the low speed flow 
using D2Q9 model, which is on of the DdQb models proposed by Y.H. Qian et al. 
(1992). The equilibrium equation is chosen as follows: 
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where ρ  and αu  represent the density and velocity of the fluid particle at position x  
and time t , sc  is the speed of sound, the index i  denotes different particles’ 
dimensionless velocity and αβδ  is the Kronecker operator. iw  and sc  is chosen as 
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To simulate the Newtonian fluid, ω  is related to the shear viscosity, which can be 
driven by Chapman-Enskog expansion as 
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Boundary Condition 

On the boundary, we use the boundary treatment proposed by WANG et al. This 
boundary treatment divide the fictitious particle distribution into the equilibrium part 
and nonequilibrium part as follows: 

( ) ( )( ) ( )( )tftftf bibibi ,,, neqeq xxx +=                                             （5） 

where ( )( )tf bi ,eq x  is set as 

( )( ) ( ) ( )
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where ( ) ( ) ( )ttt fffb ,,2, xxx ρρρ −=  and fffb uuu
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For the nonequilibrium part, we define ( )( )tf bi ,neq x  as follows: 

( )( ) ( )( ) ( )( )tftftf ffifibi ,,2, neqneqneq xxx −= .                                       （7） 

Simulations 

In this report, polygonal cylinders and oval cylinders with different eccentricities are 
simulated. Because of the resolution, the critical flow when it separated cannot be 
simulated. To find the critical Reynolds number, higher Reynolds number flows are 
simulated and extrapolated to critical Reynolds number. 
The Reynolds number is define as: 

ν
UL

=Re                                                                （8） 
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In flows around polygonal cylinders, L  is the diameter of their circumcircles. In 
flows around oval cylinders, L  is the length of major axis. 
 
As experiment assembled by Milton Van Dyke (1988) reported, the length of 
standing eddies increases linearly with Reynolds number. The results of simulations 
are shown below: 

 

Figure 1.  Eddies’ lengths of ovals 

 

Figure 2.  Eddies’ lengths of polygons. The black solid line represents circle 
cylinder 

The two figures above show the exact linear relationship between the length and 
Reynolds number, which agrees with the experiment results. The slopes of these 
straight lines in the figures above are different. It shows how separating vortex 
changes after separated. We consider it is relative to aspect ratio of each cylinder. The 
slope increases as the aspect ratio increases. 
The critical Reynolds number is shown in the table below: 
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Table 1. Critical Reynolds number and streaming pattern 

 Sharp head 

forward 

Blunt head 

forward 

Streamlines pattern 

(sharp head forward) 

Streamlines pattern 

(blunt head forward) 

Circle 6.1758 6.1758 
  

Triangle 0 13.9904 
  

Square 6.9117 2.7690 
  

Pentagon 6.9461 6.1410 
  

Oval 

(e=0.25) 
6.2908 5.6197 

  
Oval 

(e=0.5) 
8.2046 4.9342 

  

Oval 

(e=0.75) 
13.7695 3.4372 

  

 

The variation tendency of oval cylinders is shown below: 

 
(a)                                                                      (b) 

Figure 3.  Tendency of critical Reynolds numbers 

 

When sharp head point forward, the tendency of critical Reynolds number of oval 
cylinders monotone increases as the eccentricity increases. When blunt head point 
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forward, critical Reynolds number monotone decrease as the eccentricity decreases. 
As the number of angles increasing, the critical Reynolds number of polygonal 
cylinders is approaching that of circle cylinder (the black line in Figure 3(b)). 

Conclusions 

We successfully simulated the flows around various cylinders and get some 
preliminary result. We find the separation flow has two important characteristics: 
critical Reynolds number and the slopes. 
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